Home
Class 12
MATHS
If A=[a(ij)](2xx2), where a(ij)=(i+2j)^2...

If `A=[a_(ij)]_(2xx2)`, where `a_(ij)=(i+2j)^2/2`, then A is equal to:

A

`[(9,25),(8,18)]`

B

`[(9//2,25//2),(8,18)]`

C

`[(9,25),(4,9)]`

D

`[(9//2,25//2),(4,9)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A = [a_{ij}]_{2 \times 2} \) where \( a_{ij} = \frac{(i + 2j)^2}{2} \), we will calculate each element of the matrix step by step. ### Step 1: Identify the elements of the matrix The matrix \( A \) is a \( 2 \times 2 \) matrix, which means it has four elements \( a_{11}, a_{12}, a_{21}, a_{22} \). ### Step 2: Calculate \( a_{11} \) For \( i = 1 \) and \( j = 1 \): \[ a_{11} = \frac{(1 + 2 \cdot 1)^2}{2} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} \] ### Step 3: Calculate \( a_{12} \) For \( i = 1 \) and \( j = 2 \): \[ a_{12} = \frac{(1 + 2 \cdot 2)^2}{2} = \frac{(1 + 4)^2}{2} = \frac{5^2}{2} = \frac{25}{2} \] ### Step 4: Calculate \( a_{21} \) For \( i = 2 \) and \( j = 1 \): \[ a_{21} = \frac{(2 + 2 \cdot 1)^2}{2} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8 \] ### Step 5: Calculate \( a_{22} \) For \( i = 2 \) and \( j = 2 \): \[ a_{22} = \frac{(2 + 2 \cdot 2)^2}{2} = \frac{(2 + 4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18 \] ### Step 6: Form the matrix \( A \) Now that we have all the elements, we can write the matrix \( A \): \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \] ### Final Answer Thus, the matrix \( A \) is: \[ A = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

Let A=[a_(ij)]_(n xx n) where a_(ij)=i^(2)-j^(2). Then A is: (A) skew symmetric matrix (B) symmetric matrix (C) null matrix (D) unit matrix

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals