Home
Class 12
MATHS
If A=[(alpha,beta),(gamma,-alpha)] is su...

If `A=[(alpha,beta),(gamma,-alpha)]` is such that `A^2=I`, then the value of `1-alpha^2-beta gamma` is:

A

`-1`

B

0

C

1

D

Can't be calculated

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 1 - \alpha^2 - \beta \gamma \) given that the matrix \( A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \) satisfies \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] 2. **Perform the matrix multiplication**: - First row, first column: \[ \alpha \cdot \alpha + \beta \cdot \gamma = \alpha^2 + \beta \gamma \] - First row, second column: \[ \alpha \cdot \beta + \beta \cdot (-\alpha) = \alpha \beta - \beta \alpha = 0 \] - Second row, first column: \[ \gamma \cdot \alpha + (-\alpha) \cdot \gamma = \gamma \alpha - \alpha \gamma = 0 \] - Second row, second column: \[ \gamma \cdot \beta + (-\alpha) \cdot (-\alpha) = \gamma \beta + \alpha^2 \] Thus, we have: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \alpha^2 + \gamma \beta \end{pmatrix} \] 3. **Set \( A^2 \) equal to the identity matrix \( I \)**: \[ A^2 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 4. **Equate the corresponding elements**: From the first row, first column: \[ \alpha^2 + \beta \gamma = 1 \] From the second row, second column: \[ \alpha^2 + \gamma \beta = 1 \] Since both equations are the same, we can use either one. 5. **Rearranging the equation**: \[ \alpha^2 + \beta \gamma = 1 \implies 1 - \alpha^2 - \beta \gamma = 0 \] 6. **Final result**: Therefore, the value of \( 1 - \alpha^2 - \beta \gamma \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

If [(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] is orthogonal, then find the value of 2alpha^(2)+6beta^(2)+3gamma^(2).

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha,beta,gamma and delta are roots of equation x^(4)-7x^(2)+x-5=0, then the value of (alpha+beta+gamma)(alpha+beta+delta)(beta+gamma+delta)(alpha+gamma+delta) is equal to

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If alpha, beta, gamma in [0,2pi] , then the sum of all possible values of alpha, beta, gamma if sin alpha=-1/sqrt(2), cos beta=-1/sqrt(2), tan gamma =-sqrt(3) , is