Home
Class 12
MATHS
Evaluate dy/dx, if y=8^x/x^8....

Evaluate `dy/dx`, if `y=8^x/x^8`.

A

`(8x^7)/(8^xlog8)`

B

`(8^xlog8)/(8x^7)`

C

`(8^x)/(x^8)[log8-8/x]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \(\frac{dy}{dx}\) for the function \(y = \frac{8^x}{x^8}\), we will use the quotient rule of differentiation. The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = 8^x\) and \(v = x^8\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = 8^x\) - \(v = x^8\) ### Step 2: Differentiate \(u\) and \(v\) Now we need to find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\). 1. Differentiate \(u\): \[ \frac{du}{dx} = \frac{d}{dx}(8^x) = 8^x \ln(8) \] 2. Differentiate \(v\): \[ \frac{dv}{dx} = \frac{d}{dx}(x^8) = 8x^7 \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{dy}{dx} = \frac{x^8 (8^x \ln(8)) - 8^x (8x^7)}{(x^8)^2} \] ### Step 4: Simplify the Expression Now simplify the expression: \[ \frac{dy}{dx} = \frac{8^x x^8 \ln(8) - 8^{x+1} x^7}{x^{16}} \] Factor out \(8^x x^7\): \[ \frac{dy}{dx} = \frac{8^x x^7 (x \ln(8) - 8)}{x^{16}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{8^x (x \ln(8) - 8)}{x^9} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{8^x (x \ln(8) - 8)}{x^9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find, dy/dx if y = x^x

Find dy/dx if y = x^(1/x)

Find dy/dx if y=x^x+tan(x^x)

Find dy/dx , if y=Sin( x^x)

Find (dy)/(dx) if y=2^(x^(x))

Find (dy)/(dx) if y^(x)=x^(y)

Find (dy)/(dx) , if y^x+x^y+x^x=a^b .

Find (dy)/(dx) if "y=(x+1)/(x)

y=a^x , find dy/dx

Find (dy)/(dx) for y=x^(x)