Home
Class 12
MATHS
Evaluate the determinant Delta=|(log3 51...

Evaluate the determinant `Delta=|(log_3 512,log_4 3),(log_3 8,log_4 9)|`

A

`15/2`

B

12

C

`14/3`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ \Delta = \begin{vmatrix} \log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix} \] we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2. We know that: \[ \log_a b = \frac{\log_c b}{\log_c a} \] Using base 2, we can rewrite the logarithms: \[ \log_3 512 = \frac{\log_2 512}{\log_2 3}, \quad \log_4 3 = \frac{\log_2 3}{\log_2 4}, \quad \log_3 8 = \frac{\log_2 8}{\log_2 3}, \quad \log_4 9 = \frac{\log_2 9}{\log_2 4} \] Calculating the values: \[ \log_2 512 = 9 \quad (\text{since } 512 = 2^9), \quad \log_2 4 = 2 \quad (\text{since } 4 = 2^2), \quad \log_2 8 = 3 \quad (\text{since } 8 = 2^3), \quad \log_2 9 = 2 \log_2 3 \] ### Step 2: Substitute back into the determinant. Now substituting these values back into the determinant: \[ \Delta = \begin{vmatrix} \frac{9}{\log_2 3} & \frac{\log_2 3}{2} \\ \frac{3}{\log_2 3} & \frac{2 \log_2 3}{2} \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} \frac{9}{\log_2 3} & \frac{\log_2 3}{2} \\ \frac{3}{\log_2 3} & \log_2 3 \end{vmatrix} \] ### Step 3: Calculate the determinant. Using the formula for the determinant of a 2x2 matrix: \[ \Delta = ad - bc \] where \( a = \frac{9}{\log_2 3}, b = \frac{\log_2 3}{2}, c = \frac{3}{\log_2 3}, d = \log_2 3 \): \[ \Delta = \left(\frac{9}{\log_2 3} \cdot \log_2 3\right) - \left(\frac{\log_2 3}{2} \cdot \frac{3}{\log_2 3}\right) \] This simplifies to: \[ \Delta = 9 - \frac{3}{2} = 9 - 1.5 = 7.5 \] ### Step 4: Final answer. Thus, the value of the determinant \(\Delta\) is: \[ \Delta = \frac{15}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Q.Evaluate the determinant Delta=|(log_(3)512log_(4)3),log_(3)8log_(4)9)|

Evaluate the determinant quad =|(log)_(3)512(log)_(4)3(log)_(3)8(log)_(4)9|

log x=(log3)+(log4)+(log5)

The value of |[log_3 1024, log_3 3],[log_3 8, log_3 9]| xx|[log_2 3, log_4 3],[log_3 4, log_3 4]|

Determine the value of log_4 {log_sqrt2(log_3 81)}

The value of 3^(log_4 5)+4^(log_5 3)-5^(log_4 3)-3^(log_5 4)=

The value of (log_(3)8)/(log_(9)16log_(4)10)