Home
Class 12
MATHS
Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-...

Range of `f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x` is:

A

`(pi/4,(3pi)/4)`

B

`[pi/4,(3pi)/4]`

C

`{pi/4,(3pi)/4}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}(x) + \tan^{-1}(x) + \sec^{-1}(x) \), we will analyze the individual components of the function and their respective ranges. ### Step 1: Identify the domains of each function 1. **Domain of \( \sin^{-1}(x) \)**: The domain is \( x \in [-1, 1] \) and the range is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). 2. **Domain of \( \tan^{-1}(x) \)**: The domain is \( x \in (-\infty, \infty) \) and the range is \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). 3. **Domain of \( \sec^{-1}(x) \)**: The domain is \( x \leq -1 \) or \( x \geq 1 \) and the range is \( [0, \pi] \) excluding \( \frac{\pi}{2} \). ### Step 2: Find the common domain Since \( \sec^{-1}(x) \) restricts \( x \) to \( x \leq -1 \) or \( x \geq 1 \), we will evaluate \( f(x) \) at the endpoints of the domain of \( \sin^{-1}(x) \) which is \( x = -1 \) and \( x = 1 \). ### Step 3: Evaluate \( f(x) \) at \( x = 1 \) \[ f(1) = \sin^{-1}(1) + \tan^{-1}(1) + \sec^{-1}(1) \] - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \sec^{-1}(1) = 0 \) Thus, \[ f(1) = \frac{\pi}{2} + \frac{\pi}{4} + 0 = \frac{3\pi}{4} \] ### Step 4: Evaluate \( f(x) \) at \( x = -1 \) \[ f(-1) = \sin^{-1}(-1) + \tan^{-1}(-1) + \sec^{-1}(-1) \] - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \sec^{-1}(-1) = \pi \) Thus, \[ f(-1) = -\frac{\pi}{2} - \frac{\pi}{4} + \pi = -\frac{\pi}{2} - \frac{\pi}{4} + \frac{4\pi}{4} = \frac{\pi}{4} \] ### Step 5: Determine the range of \( f(x) \) From our evaluations: - At \( x = 1 \), \( f(1) = \frac{3\pi}{4} \) - At \( x = -1 \), \( f(-1) = \frac{\pi}{4} \) Since \( \tan^{-1}(x) \) is continuous and takes all values between \( -\frac{\pi}{2} \) and \( \frac{\pi}{2} \) as \( x \) varies over the real numbers, and since both \( \sin^{-1}(x) \) and \( \sec^{-1}(x) \) contribute to the overall function, we conclude that the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \] ### Final Answer The range of \( f(x) = \sin^{-1}(x) + \tan^{-1}(x) + \sec^{-1}(x) \) is \( \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.

Range of f(x)=sin^(-1)x+sec^(-1)x is

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)x

Range of f(x)=sin^(-1)x*sin x

Range of f(x)=cot^(-1)x+tan^(-1)x+csc^(-1)x is

The range of f(x)=cot^(-1)(-x)-tan^(-1)x+sec^(-1)x is

Th e range of f(x)=cot^(-1)(-x)-tan^(-1)x+sec^(-1)x is

Range of f(x)=sin^(-1)x+cos^(-1)x+cot^(-1)x

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x