Home
Class 12
MATHS
The value of sin^2("cos"^(-1)1/2)+cos^2(...

The value of `sin^2("cos"^(-1)1/2)+cos^2("sin"^(-1)1/3)` is:

A

`17/36`

B

`59/36`

C

`36/59`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \), we will break down the problem step by step. ### Step 1: Find \( \sin^2(\cos^{-1}(1/2)) \) Let \( \theta = \cos^{-1}(1/2) \). This means that \( \cos(\theta) = 1/2 \). Using the Pythagorean identity, we can find \( \sin(\theta) \): \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Substituting \( \cos(\theta) = 1/2 \): \[ \sin^2(\theta) + (1/2)^2 = 1 \] \[ \sin^2(\theta) + 1/4 = 1 \] \[ \sin^2(\theta) = 1 - 1/4 = 3/4 \] Thus, \[ \sin^2(\cos^{-1}(1/2)) = \frac{3}{4} \] ### Step 2: Find \( \cos^2(\sin^{-1}(1/3)) \) Let \( \phi = \sin^{-1}(1/3) \). This means that \( \sin(\phi) = 1/3 \). Using the Pythagorean identity again, we can find \( \cos(\phi) \): \[ \sin^2(\phi) + \cos^2(\phi) = 1 \] Substituting \( \sin(\phi) = 1/3 \): \[ (1/3)^2 + \cos^2(\phi) = 1 \] \[ 1/9 + \cos^2(\phi) = 1 \] \[ \cos^2(\phi) = 1 - 1/9 = 8/9 \] Thus, \[ \cos^2(\sin^{-1}(1/3)) = \frac{8}{9} \] ### Step 3: Combine the results Now, we can combine the results from Step 1 and Step 2: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{3}{4} + \frac{8}{9} \] ### Step 4: Find a common denominator and add The least common multiple of 4 and 9 is 36. We convert both fractions: \[ \frac{3}{4} = \frac{3 \times 9}{4 \times 9} = \frac{27}{36} \] \[ \frac{8}{9} = \frac{8 \times 4}{9 \times 4} = \frac{32}{36} \] Now, we can add the two fractions: \[ \frac{27}{36} + \frac{32}{36} = \frac{59}{36} \] ### Final Answer Thus, the value of \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \) is: \[ \frac{59}{36} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^(-1){sin(cos^(-1)(1/2))} is

The value of sin(sin^(-1)(1/2)+cos^(-1)(1/2))=?

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))=

find the value of sin^(-1)(-(1)/(2))+cos^(-1)(-(1)/(2))

The value of (cos(sin^(-1)x))^(2)-(sin(cos^(-1)x))^(2) is =