Home
Class 12
MATHS
If A=[(1,2),(2,1)] and f(x)=(1+x)(1-x), ...

If `A=[(1,2),(2,1)]` and f(x)=(1+x)(1-x), then f(A) is:

A

`-4[(1,1),(1,1)]`

B

`-8[(1,1),(1,1)]`

C

`4[(1,1),(1,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(A) \) where \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) and \( f(x) = (1+x)(1-x) \), we first need to evaluate \( f(x) \) in terms of a matrix. ### Step 1: Define the function \( f(x) \) The function is given as: \[ f(x) = (1+x)(1-x) = 1 - x^2 \] ### Step 2: Apply the function to the matrix \( A \) To find \( f(A) \), we will replace \( x \) in \( f(x) \) with the matrix \( A \): \[ f(A) = 1 - A^2 \] ### Step 3: Calculate \( A^2 \) First, we need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5 \) - First row, second column: \( 1 \cdot 2 + 2 \cdot 1 = 2 + 2 = 4 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 2 = 2 + 2 = 4 \) - Second row, second column: \( 2 \cdot 2 + 1 \cdot 1 = 4 + 1 = 5 \) Thus, we have: \[ A^2 = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \] ### Step 4: Compute \( f(A) \) Now, substituting \( A^2 \) back into the function: \[ f(A) = 1 - A^2 = I - A^2 \] Where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, we compute \( I - A^2 \): \[ f(A) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 1-5 & 0-4 \\ 0-4 & 1-5 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix} \] ### Final Result Thus, the result of \( f(A) \) is: \[ f(A) = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)+f(1-x)=2, then f((1)/(2)) is

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2), find f(x)

If f(x)=x for 0<=x<(1)/(2),f(x)=1f or x=(1)/(2) and f(x)=1- for (1)/(2)<<1 then at x=(1)/(2) the function is

If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4) , then f'(0)=1

If f(x)=(x-1)/(x+1) then f(2x) is equal to

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f(x)=x^2+2x+1 , then: f(x-1)-=