Home
Class 12
MATHS
If A=[(3,1),(-1,2)], find A^(-1)...

If `A=[(3,1),(-1,2)]`, find `A^(-1)`

A

`1/7[(2,-1),(1,3)]`

B

`1/7[(3,1),(-1,2)]`

C

`1/7[(-2,1),(-1,-3)]`

D

`1/7[(2,1),(1,-3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 3 \) - \( b = 1 \) - \( c = -1 \) - \( d = 2 \) Now, we can calculate the determinant: \[ \text{det}(A) = (3)(2) - (1)(-1) = 6 + 1 = 7 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a 2x2 matrix is found by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{7} \cdot \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] ### Step 4: Write the Final Result Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{2}{7} & \frac{-1}{7} \\ \frac{1}{7} & \frac{3}{7} \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,-1),(3,4)] find |(A^(-1))^(-1)|

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

Find the inverse of each of the matrices given below : Compute (AB)^(-1) when A=[(1,1,2),(0,2,-3),(3,-2,4)] and B^(-1)=[(1,2,0),(0,3,-1),(1,0,2)] . Find A^(-1).

If A=[[2,5],[-3,1]] ,then find A^(-1) .

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

(2) If A= [[2,3],[1,5]] then find A^(-1)

If A=[[2,5,3],[3,1,2],[1,2,1]] , then find A^(-1)

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

If A=[[2,-3,5],[3,2,-4],[1,1,-2]], find A^(-1). Using A^(-1) solve the following system of equations: 2x-3y+5z=16;3x+2y-4z=-4;x+y-2z=-3