Home
Class 12
MATHS
If x=a cos^3 theta and y=a sin^3 theta, ...

If `x=a cos^3 theta` and `y=a sin^3 theta`, then `1+(dy/dx)^2` is equal to:

A

`tan theta`

B

`tan^2 theta`

C

1

D

`sec^2 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \(1 + \left(\frac{dy}{dx}\right)^2\) given that \(x = a \cos^3 \theta\) and \(y = a \sin^3 \theta\). ### Step-by-Step Solution: 1. **Express \(x\) and \(y\) in terms of \(\theta\)**: \[ x = a \cos^3 \theta \quad \text{and} \quad y = a \sin^3 \theta \] 2. **Differentiate \(x\) and \(y\) with respect to \(\theta\)**: \[ \frac{dx}{d\theta} = a \cdot 3 \cos^2 \theta \cdot (-\sin \theta) = -3a \cos^2 \theta \sin \theta \] \[ \frac{dy}{d\theta} = a \cdot 3 \sin^2 \theta \cdot \cos \theta = 3a \sin^2 \theta \cos \theta \] 3. **Use the chain rule to find \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] Simplifying this gives: \[ \frac{dy}{dx} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta \] 4. **Calculate \(1 + \left(\frac{dy}{dx}\right)^2\)**: \[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + (-\tan \theta)^2 = 1 + \tan^2 \theta \] 5. **Use the trigonometric identity**: We know from trigonometric identities that: \[ 1 + \tan^2 \theta = \sec^2 \theta \] 6. **Final Result**: Therefore, we conclude that: \[ 1 + \left(\frac{dy}{dx}\right)^2 = \sec^2 \theta \] ### Answer: \[ 1 + \left(\frac{dy}{dx}\right)^2 = \sec^2 \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^3theta,y=asin^3theta , then 1+((dy)/(dx))^2 is ___

If x = a cos theta and y = b sin theta , find (dy)/(dx)

If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?

x=a cos theta,y=a sin theta Find dy/dx

If x=cos theta-cos2 theta,y=sin theta-sin2 theta then (dy)/(dx) is

x=a cos theta,y=b sin theta then find dy/dx