Home
Class 12
MATHS
If A=[(a,b),(b,a)] and A^2=[(alpha,beta)...

If `A=[(a,b),(b,a)]` and `A^2=[(alpha,beta),(beta,alpha)]`, then:

A

`alpha=a^2+b^2, beta=ab`

B

`alpha=a^2+b^2, beta = 2ab`

C

`alpha=a^2+b^2, beta = a^2-b^2`

D

`alpha = 2ab, beta = a^2+b^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of α (alpha) and β (beta) based on the given matrices A and A². 1. **Define the matrices**: We have: \[ A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] and \[ A^2 = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] 2. **Calculate \( A^2 \)**: To find \( A^2 \), we perform matrix multiplication: \[ A^2 = A \cdot A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] The multiplication is done as follows: - The element at the first row and first column: \[ a \cdot a + b \cdot b = a^2 + b^2 \] - The element at the first row and second column: \[ a \cdot b + b \cdot a = ab + ab = 2ab \] - The element at the second row and first column: \[ b \cdot a + a \cdot b = ba + ab = 2ab \] - The element at the second row and second column: \[ b \cdot b + a \cdot a = b^2 + a^2 \] Therefore, we have: \[ A^2 = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} \] 3. **Set the matrices equal**: Now we set \( A^2 \) equal to the given matrix: \[ \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} \] 4. **Equate corresponding elements**: From the equality of matrices, we can equate the corresponding elements: - From the first row and first column: \[ \alpha = a^2 + b^2 \] - From the first row and second column: \[ \beta = 2ab \] 5. **Final values**: Thus, we conclude: \[ \alpha = a^2 + b^2 \] \[ \beta = 2ab \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha,beta are the roots of ax^(2)+bx+c=0, then find the equation whose roots (1)(1)/(alpha^(2)),(1)/(beta^(2)) and (2) (1)/(a alpha+b),(1)/(a beta+b) and (3)alpha+(1)/(beta),beta+(1)/(alpha)

If alpha,beta are roots of the equation 2x^(2)+6x+b=0(b<0), then (alpha)/(beta)+(beta)/(alpha) is less than

If alpha and beta are the zeros of the quadratic polynomial f(x)=2x^(2)+bx+c ,then evaluate: a[(alpha^(2))/(beta)+(beta^(2))/(alpha)]+b[(alpha)/(beta)+(beta)/(alpha)]

If (cos alpha)/(cos beta)=a and (sin alpha)/(sin beta)=b then the value of sin^(2)beta in terms of a and b

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)= A)-1 B)0 C)1 D)2

If tan (alpha+beta)=a+b and tan(alpha-beta)=a-b,thenshowtâtan alpha-b tan beta=a^(2)