Home
Class 12
MATHS
If f(x)={a x^2+b ,0lt=x<1 4,x=1x+3,1<xg...

If `f(x)={a x^2+b ,0lt=x<1 4,x=1x+3,1

A

(2,2)

B

(3,1)

C

(4,0)

D

(5,2)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of aa n db so that the function f(x) defined by f(x)={x^2+a x+b,0lt=x<2 3x+2,2lt=xlt=42a x+5b ,4

The relation f is defined by f(x)={x^2,""0lt=xlt=3 3x ,""""3lt=xlt=10 The relating g is defined by g(x)={x^2,""0lt=xlt=3 3x ,""""2lt=xlt=10 Show that f is a function and g is not a function.

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2 If lim_(x->1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " 1 lt x le 2):} is continuous at x=1 , then the most suitable values of a, b are

The function f(x) is defined by f(x)={x^2+a x+b\ \ \ ,\ \ \ 0lt=x 4 f is continuous them determine the value of a and b

If f(x) = x^(3) + bx^(2) + cx +d and 0lt b^(2) lt c .then in (-infty, infty)