Home
Class 12
MATHS
Find dy/dx|(x=pi/2), where y=e^(sinx)...

Find `dy/dx|_(x=pi/2)`, where `y=e^(sinx)`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \(y = e^{\sin x}\), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = e^{\sin x} \] To differentiate \(y\) with respect to \(x\), we will use the chain rule. The derivative of \(e^{u}\) with respect to \(x\) is \(e^{u} \cdot \frac{du}{dx}\), where \(u = \sin x\). Thus, we have: \[ \frac{dy}{dx} = e^{\sin x} \cdot \frac{d}{dx}(\sin x) \] ### Step 2: Differentiate \(\sin x\) The derivative of \(\sin x\) is \(\cos x\). Therefore, we can substitute this into our derivative: \[ \frac{dy}{dx} = e^{\sin x} \cdot \cos x \] ### Step 3: Evaluate at \(x = \frac{\pi}{2}\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\): \[ \frac{dy}{dx}\bigg|_{x = \frac{\pi}{2}} = e^{\sin\left(\frac{\pi}{2}\right)} \cdot \cos\left(\frac{\pi}{2}\right) \] ### Step 4: Calculate \(\sin\left(\frac{\pi}{2}\right)\) and \(\cos\left(\frac{\pi}{2}\right)\) We know that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] ### Step 5: Substitute the values Substituting these values into our derivative: \[ \frac{dy}{dx}\bigg|_{x = \frac{\pi}{2}} = e^{1} \cdot 0 = e \cdot 0 = 0 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) is: \[ \frac{dy}{dx}\bigg|_{x = \frac{\pi}{2}} = 0 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

Find (dy)/(dx) where (i) y=e^(log x)+tanx

Find (dy)/(dx) , where y = (x + 1)^(2x) .

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) if x-y=pi

Find (dy)/(dx) , when If y = (cos x + sinx)/(cos x - sinx) , show that (dy)/(dx) = sec^(2) (x + (pi)/(4)) .

The value of (dy)/(dx) at x=pi/2 , where y is given by y=x^(sinx)+sqrt(x) is equal to.....