Home
Class 12
MATHS
Evaluate dy/dx if y=e^(sinx^2)...

Evaluate dy/dx if `y=e^(sinx^2)`

A

`2xcosx^2e^(sinx^2)`

B

`2xsinx^2e^(cosx^2)`

C

`2x^2e^(cosx^2)`

D

`x^2cosx^2e^(sinx^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \(\frac{dy}{dx}\) for the function \(y = e^{\sin(x^2)}\), we will use the chain rule of differentiation. Here are the steps to solve the problem: ### Step 1: Identify the outer and inner functions In the function \(y = e^{\sin(x^2)}\), we can identify: - The outer function \(g(u) = e^u\) where \(u = \sin(x^2)\) - The inner function \(f(x) = \sin(x^2)\) ### Step 2: Differentiate the outer function The derivative of the outer function \(g(u) = e^u\) with respect to \(u\) is: \[ \frac{dg}{du} = e^u \] ### Step 3: Differentiate the inner function Now we need to differentiate the inner function \(f(x) = \sin(x^2)\). We will again use the chain rule here: - The derivative of \(\sin(v)\) is \(\cos(v)\) where \(v = x^2\) - The derivative of \(v = x^2\) is \(2x\) Thus, using the chain rule: \[ \frac{df}{dx} = \cos(x^2) \cdot \frac{dv}{dx} = \cos(x^2) \cdot 2x = 2x \cos(x^2) \] ### Step 4: Apply the chain rule Now we can apply the chain rule to find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dg}{du} \cdot \frac{df}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = e^{\sin(x^2)} \cdot (2x \cos(x^2)) \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = 2x \cos(x^2) e^{\sin(x^2)} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if xy=sinx .

Find dy/dx if y=e^(tan^-1(x^2)

Find dy/dx if y=tan(e^(x))

(dy)/(dx ) + 2y =sinx

If f(x)=sinx then find dy/dx if y=cosxf(x^2)

Find (dy)/(dx) , if y=e^(x^(3))

Find (dy)/(dx) , if y=(sinx)^(cosx)

Find (dy)/(dx) if y=x^(e^(-x^(2)))

ysinx dy/dx=(sinx-y^2)cosx

Find (dy)/(dx) ,if y=e^(x^(3)) ?