Home
Class 12
MATHS
If [(1,x)][(2,-1),(1,2)][(1),(3)]=[0], t...

If `[(1,x)][(2,-1),(1,2)][(1),(3)]=[0]`, then x=

A

`2/7`

B

`1/7`

C

`5/7`

D

`3/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we need to perform matrix multiplication and set the resulting matrix equal to the zero matrix. Let's break it down step by step. ### Step-by-Step Solution: 1. **Identify the Matrices:** The given matrices are: - Row matrix: \( R = [1, x] \) - 2x2 matrix: \( A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \) - Column matrix: \( C = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \) 2. **Matrix Multiplication:** We need to multiply the row matrix \( R \) with the 2x2 matrix \( A \) first, and then multiply the result with the column matrix \( C \). First, compute \( R \cdot A \): \[ R \cdot A = [1, x] \cdot \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \] The result will be a row matrix with two elements: - First element: \( 1 \cdot 2 + x \cdot 1 = 2 + x \) - Second element: \( 1 \cdot (-1) + x \cdot 2 = -1 + 2x \) Therefore, \[ R \cdot A = [2 + x, -1 + 2x] \] 3. **Multiply the Result with the Column Matrix:** Now, we multiply the resulting row matrix with the column matrix \( C \): \[ (R \cdot A) \cdot C = [2 + x, -1 + 2x] \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} \] The result will be a single element: \[ (2 + x) \cdot 1 + (-1 + 2x) \cdot 3 = 2 + x - 3 + 6x = 2 + x - 3 + 6x = 7x - 1 \] 4. **Set the Result Equal to Zero:** According to the problem, this result equals the zero matrix: \[ 7x - 1 = 0 \] 5. **Solve for \( x \):** Rearranging the equation gives: \[ 7x = 1 \] Dividing both sides by 7, we find: \[ x = \frac{1}{7} \] ### Final Answer: Thus, the value of \( x \) is \( \frac{1}{7} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log[(x-1)^(1//2)-(x+1)^(1//2)]," then: "(dy)/(dx)=

If y=tan^(-1)(1+2x)+tan^(-1)(1-2x),"then "dy/dx=

Solve for x:(x-1)/(2x+1)+(2x+1)/(x-1)=2, where x!=-(1)/(2),1

The points (x +1, 2), (1, x +2), ((1)/(x+1),(2)/(x+1)) are collinear, then x is equal to

(2x-1)/(2x+1)+(2x+1)/(2x-1)=6

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),"then " (dy)/(dx)=

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

Solve for x: (x-1)/(2x+1) +(2x+1)/(x-1)=2," where "x ne -(1)/(2),1