Home
Class 12
MATHS
If y=tan^(-1)((sqrtx-x)/(1+x^(3//2))), t...

If `y=tan^(-1)((sqrtx-x)/(1+x^(3//2)))`, then y'(1) is equal to:

A

0

B

`1/2`

C

`-1`

D

`-1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y'(1) \) for the function \( y = \tan^{-1}\left(\frac{\sqrt{x} - x}{1 + x^{3/2}}\right) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \tan^{-1}\left(\frac{\sqrt{x} - x}{1 + x^{3/2}}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we use the formula for the derivative of the inverse tangent function: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{\sqrt{x} - x}{1 + x^{3/2}} \). ### Step 3: Differentiate \( u \) Now, we need to differentiate \( u \): \[ u = \frac{\sqrt{x} - x}{1 + x^{3/2}} \] We will use the quotient rule: \[ \frac{du}{dx} = \frac{(1 + x^{3/2})\frac{d}{dx}(\sqrt{x} - x) - (\sqrt{x} - x)\frac{d}{dx}(1 + x^{3/2})}{(1 + x^{3/2})^2} \] ### Step 4: Calculate \( \frac{d}{dx}(\sqrt{x} - x) \) \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}, \quad \frac{d}{dx}(-x) = -1 \] Thus, \[ \frac{d}{dx}(\sqrt{x} - x) = \frac{1}{2\sqrt{x}} - 1 \] ### Step 5: Calculate \( \frac{d}{dx}(1 + x^{3/2}) \) \[ \frac{d}{dx}(1 + x^{3/2}) = \frac{3}{2}x^{1/2} \] ### Step 6: Substitute back into \( \frac{du}{dx} \) Now substituting back: \[ \frac{du}{dx} = \frac{(1 + x^{3/2})\left(\frac{1}{2\sqrt{x}} - 1\right) - (\sqrt{x} - x)\left(\frac{3}{2}x^{1/2}\right)}{(1 + x^{3/2})^2} \] ### Step 7: Evaluate \( \frac{dy}{dx} \) at \( x = 1 \) Now we need to evaluate \( \frac{dy}{dx} \) at \( x = 1 \): 1. Calculate \( u \) at \( x = 1 \): \[ u = \frac{\sqrt{1} - 1}{1 + 1^{3/2}} = \frac{1 - 1}{1 + 1} = 0 \] 2. Calculate \( 1 + u^2 \): \[ 1 + u^2 = 1 + 0^2 = 1 \] 3. Now substitute \( x = 1 \) into \( \frac{du}{dx} \): \[ \frac{du}{dx} \text{ at } x = 1 = \frac{(1 + 1)\left(\frac{1}{2} - 1\right) - (1 - 1)\left(\frac{3}{2}\right)}{(1 + 1)^2} \] Simplifying this gives: \[ \frac{du}{dx} = \frac{2 \cdot (-\frac{1}{2})}{4} = -\frac{1}{4} \] ### Step 8: Final calculation of \( y' \) Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1} \cdot \left(-\frac{1}{4}\right) = -\frac{1}{4} \] ### Conclusion Thus, we find that: \[ y'(1) = -\frac{1}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2)))), then y'(1) is:

If y=(tan^(-1))(sqrt(1+x^(2))-1)/(x), then y'(1) is equal to

If y=tan n^(-1) ((sqrtx(3-x))/( 1-3x) ) ,then (dy)/(dx) =

What is the derivative of tan^(-1)((sqrtx-x)/(1+x^(3//2))) at x = 1?

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=(1)/(sqrtx)=(x)^(-1//2) , then find dy//dx .