Home
Class 12
MATHS
If matrix A=[(3,-3),(-3,3)] and A^2=lamd...

If matrix `A=[(3,-3),(-3,3)]` and `A^2=lamdaA`, then find the value of `lamda`

A

`-4`

B

5

C

6

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) given that \(A^2 = \lambda A\) for the matrix \(A = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}\). ### Step 1: Calculate \(A^2\) To find \(A^2\), we multiply matrix \(A\) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \] ### Step 2: Perform the matrix multiplication We will calculate each element of the resulting matrix: - The element at position (1,1): \[ 3 \cdot 3 + (-3) \cdot (-3) = 9 + 9 = 18 \] - The element at position (1,2): \[ 3 \cdot (-3) + (-3) \cdot 3 = -9 - 9 = -18 \] - The element at position (2,1): \[ -3 \cdot 3 + 3 \cdot (-3) = -9 - 9 = -18 \] - The element at position (2,2): \[ -3 \cdot (-3) + 3 \cdot 3 = 9 + 9 = 18 \] Putting these together, we have: \[ A^2 = \begin{pmatrix} 18 & -18 \\ -18 & 18 \end{pmatrix} \] ### Step 3: Set up the equation \(A^2 = \lambda A\) Now we know \(A^2\), we set up the equation: \[ \begin{pmatrix} 18 & -18 \\ -18 & 18 \end{pmatrix} = \lambda \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \] ### Step 4: Express the right-hand side The right-hand side can be expressed as: \[ \lambda A = \begin{pmatrix} 3\lambda & -3\lambda \\ -3\lambda & 3\lambda \end{pmatrix} \] ### Step 5: Equate corresponding elements Now we equate the corresponding elements from both matrices: 1. From the (1,1) position: \[ 18 = 3\lambda \implies \lambda = \frac{18}{3} = 6 \] 2. From the (1,2) position: \[ -18 = -3\lambda \implies \lambda = \frac{18}{3} = 6 \] 3. From the (2,1) position: \[ -18 = -3\lambda \implies \lambda = \frac{18}{3} = 6 \] 4. From the (2,2) position: \[ 18 = 3\lambda \implies \lambda = \frac{18}{3} = 6 \] ### Conclusion In all cases, we find that \(\lambda = 6\). Thus, the value of \(\lambda\) is: \[ \boxed{6} \]
Promotional Banner