Home
Class 12
MATHS
Find x, if [(1,2,x),(1,1,1),(2,1,-1)] is...

Find x, if `[(1,2,x),(1,1,1),(2,1,-1)]` is singualr:

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) such that the matrix \[ \begin{pmatrix} 1 & 2 & x \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \] is singular, we need to compute the determinant of the matrix and set it equal to zero. ### Step 1: Write the determinant of the matrix The determinant of a 3x3 matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by the formula: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: \[ \text{det} = 1 \cdot (1 \cdot (-1) - 1 \cdot 1) - 2 \cdot (1 \cdot (-1) - 1 \cdot 2) + x \cdot (1 \cdot 1 - 1 \cdot 2) \] ### Step 2: Calculate each term in the determinant 1. Calculate \( 1 \cdot (-1 - 1) = 1 \cdot (-2) = -2 \) 2. Calculate \( -2 \cdot (-1 - 2) = -2 \cdot (-3) = 6 \) 3. Calculate \( x \cdot (1 - 2) = x \cdot (-1) = -x \) ### Step 3: Combine the results Now, substituting these values into the determinant expression: \[ \text{det} = -2 + 6 - x \] This simplifies to: \[ \text{det} = 4 - x \] ### Step 4: Set the determinant to zero Since the matrix is singular, we set the determinant equal to zero: \[ 4 - x = 0 \] ### Step 5: Solve for \( x \) Rearranging gives: \[ x = 4 \] ### Conclusion Thus, the value of \( x \) for which the matrix is singular is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |[1,2,x],[1,1,1],[2,1,-1]|=0" then find x

Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(1,1//x,2)] is singular.

Find the value of x if |(x-1,x+1,1),(1,2,1),(1,2,3)| =0

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=O.

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Find the value of x if |(x^2-x+1,x+1),(x+1,x+1)| =0

Find the value of x if |(x^2-x+1,x+1),(x+1,x+1)| =0

Find the value of x if |[1+x,1-x,1],[2,4+x,3],[-1,1,2]|=0

Find x , if ((-1)/2)^(-19)-:((-1)/2)^8=((-1)/2)^(-2x+1)