Home
Class 12
MATHS
If A(ij) denotes the cofactor of the ele...

If `A_(ij)` denotes the cofactor of the element `a_(ij)` of the determinant `|(2,-3,5),(6,0,4),(1,5,-7)|` the value of `a_11A_31+a_12A_32+a_13A_33` is:

A

0

B

5

C

10

D

`-5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} \) where \( A_{ij} \) denotes the cofactor of the element \( a_{ij} \) of the determinant \( |(2, -3, 5), (6, 0, 4), (1, 5, -7)| \). ### Step 1: Identify the elements \( a_{ij} \) The elements of the matrix are: - \( a_{11} = 2 \) - \( a_{12} = -3 \) - \( a_{13} = 5 \) ### Step 2: Calculate the cofactors \( A_{31}, A_{32}, A_{33} \) #### Finding \( A_{31} \) To find \( A_{31} \), we need to calculate the determinant of the submatrix obtained by removing the third row and first column: \[ \begin{vmatrix} -3 & 5 \\ 0 & 4 \end{vmatrix} \] Calculating this determinant: \[ (-3) \cdot 4 - (5) \cdot 0 = -12 \] Since \( A_{31} = (-1)^{3+1} \cdot (-12) = 1 \cdot (-12) = -12 \). #### Finding \( A_{32} \) To find \( A_{32} \), we need to calculate the determinant of the submatrix obtained by removing the third row and second column: \[ \begin{vmatrix} 2 & 5 \\ 6 & 4 \end{vmatrix} \] Calculating this determinant: \[ (2) \cdot (4) - (5) \cdot (6) = 8 - 30 = -22 \] Since \( A_{32} = (-1)^{3+2} \cdot (-22) = -1 \cdot (-22) = 22 \). #### Finding \( A_{33} \) To find \( A_{33} \), we need to calculate the determinant of the submatrix obtained by removing the third row and third column: \[ \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix} \] Calculating this determinant: \[ (2) \cdot (0) - (-3) \cdot (6) = 0 + 18 = 18 \] Since \( A_{33} = (-1)^{3+3} \cdot 18 = 1 \cdot 18 = 18 \). ### Step 3: Substitute the values into the expression Now we can substitute the values into the expression \( a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} \): \[ = 2 \cdot (-12) + (-3) \cdot 22 + 5 \cdot 18 \] Calculating each term: - \( 2 \cdot (-12) = -24 \) - \( -3 \cdot 22 = -66 \) - \( 5 \cdot 18 = 90 \) Now, summing these values: \[ -24 - 66 + 90 = 0 \] ### Final Answer Thus, the value of \( a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} \) is \( 0 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The cofactor of the element 0 in the determinant |(2,-3,5),(6,0,4),(1,5,-7)| is

If C_(ij) denotes the cofactor of the elements a_(ij) of the determinant A=|{:(2,-3,5),(6,0,4),(1,5,-7):}| then the value of a_(12)C_(12)+a_(32)C_(32) is :

If C_(ij) is the cofactor of the element a_(ij) of the determinant |{:(2,-3,5),(6,0,4),(1,5,-7):}| , then write the value of a_(32).c_(32)

If A_(ij) is the cofactor of the element a_(ij) of the determinant det[[2,-3,56,0,41,5,-7]], then write the value of a_(32).,A_(32).]|

Find minors and co-factors of the elements of the determinant : |{:(2,-3,5),(6,0,4),(1,5,-7):}| and verify that a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)=0

Find minors and cofactors of the elements of the determinant det[[2,-3,56,0,41,5,-7]]a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)=0

Find the minors and cofactors of the elements of the following determinants: abs([2,-3,5],[6,0,4],[1,5,-7])

Matrix A=[(1,2,3),(1,1,5),(2,4,7)] , then the value of a_(31)A_(31)+a_(32)A_(32)+a_(33)A_(33) is

Matrix A =[(1,2,3),(1,1,5),(2,4,7)] then the value of A_(31) A_(31) +a_(32) A_(32) +a_(33)A_(33) is

If A=[5 3 8 2 0 1 1 2 3] . Write the cofactor of the element a_(32) .