Home
Class 12
MATHS
If x=[(3,1,1),(5,2,3)] and y=[(2,1,1),(7...

If `x=[(3,1,1),(5,2,3)]` and `y=[(2,1,1),(7,2,4)]`, what is matrix z, such that x+y+z=0.

A

`[(-5,-2,-2),(-12,-4,-7)]`

B

`[(-2,-1,-1),(-7,-2,-4)]`

C

`[(-3,-1,-1),(-5,-2,-3)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( z \) such that \( x + y + z = 0 \), we can rearrange the equation to solve for \( z \): \[ z = - (x + y) \] ### Step 1: Define the matrices Let: \[ x = \begin{pmatrix} 3 & 1 & 1 \\ 5 & 2 & 3 \end{pmatrix}, \quad y = \begin{pmatrix} 2 & 1 & 1 \\ 7 & 2 & 4 \end{pmatrix} \] ### Step 2: Add the matrices \( x \) and \( y \) We will add the corresponding elements of matrices \( x \) and \( y \): \[ x + y = \begin{pmatrix} 3 + 2 & 1 + 1 & 1 + 1 \\ 5 + 7 & 2 + 2 & 3 + 4 \end{pmatrix} \] Calculating each element: - First row: - First element: \( 3 + 2 = 5 \) - Second element: \( 1 + 1 = 2 \) - Third element: \( 1 + 1 = 2 \) - Second row: - First element: \( 5 + 7 = 12 \) - Second element: \( 2 + 2 = 4 \) - Third element: \( 3 + 4 = 7 \) Thus, we have: \[ x + y = \begin{pmatrix} 5 & 2 & 2 \\ 12 & 4 & 7 \end{pmatrix} \] ### Step 3: Find matrix \( z \) Now, we substitute \( x + y \) into the equation for \( z \): \[ z = - (x + y) = - \begin{pmatrix} 5 & 2 & 2 \\ 12 & 4 & 7 \end{pmatrix} \] This means we will take the negative of each element: \[ z = \begin{pmatrix} -5 & -2 & -2 \\ -12 & -4 & -7 \end{pmatrix} \] ### Final Answer Thus, the matrix \( z \) is: \[ z = \begin{pmatrix} -5 & -2 & -2 \\ -12 & -4 & -7 \end{pmatrix} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If X=[{:( 3,1,-1) ,(5,-2,-3) :}] "and" Y= [{:( 2,1,-1),( 7,2,4):}] then find (i) x+y, (ii) 2x-3y. (iii) a matrix Z such that X+Y+Z is a zero matrix.

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

Determination the product [{:(,1,-1,1),(,1,-2,-2),(,2,1,3):}] [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] and use it to solve the system of equations x-y+z=4, x-2y-2z=9, 2x+y+3z=1

If A=[{:(1,1,1),(1,0,2),(3,1,1):}] , find A^(-1) . Hence, solve the system of equations : x+y+z=6 , x+2z=7 , 3x+y+z=12

If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}] , then [{:(x),(y),(z):}] is equal to

Compute A^(-1) for the following matrix A=[(-1,2,5),(2,-3,1),(-1,1,1)] . Hence solve the system of equations -x+2y+5z=2, 2x-3y+z=15 & -x+y+z= -3