Home
Class 12
MATHS
Find dy/dx if y=8x^6-4x^3...

Find dy/dx if `y=8x^6-4x^3`

A

`24x^5-8x^2`

B

`48x^5-12x^2`

C

`4x^5-x^2`

D

`3x^5-2x^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the function \( y = 8x^6 - 4x^3 \), we will use the power rule of differentiation. The power rule states that if \( y = ax^n \), then \( \frac{dy}{dx} = nax^{n-1} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ y = 8x^6 - 4x^3 \] 2. **Differentiate the first term \( 8x^6 \)**: - Apply the power rule: \[ \frac{d}{dx}(8x^6) = 6 \cdot 8x^{6-1} = 48x^5 \] 3. **Differentiate the second term \( -4x^3 \)**: - Again, apply the power rule: \[ \frac{d}{dx}(-4x^3) = 3 \cdot (-4)x^{3-1} = -12x^2 \] 4. **Combine the derivatives**: \[ \frac{dy}{dx} = 48x^5 - 12x^2 \] 5. **Final answer**: \[ \frac{dy}{dx} = 48x^5 - 12x^2 \]
Promotional Banner