Home
Class 12
MATHS
Let theta=sin^(-1)(sin(-600^@)), then va...

Let `theta=sin^(-1)(sin(-600^@))`, then value of `theta` is:

A

`pi/3`

B

`pi/2`

C

`(2pi)/3`

D

`(-2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \theta = \sin^{-1}(\sin(-600^\circ)) \), we will follow these steps: ### Step 1: Convert the angle to a standard position First, we need to convert \(-600^\circ\) into an equivalent angle within the range of \(0^\circ\) to \(360^\circ\). We can do this by adding \(360^\circ\) repeatedly until we get a positive angle. \[ -600^\circ + 360^\circ \times 2 = -600^\circ + 720^\circ = 120^\circ \] ### Step 2: Find the sine of the angle Now we can find the sine of \(120^\circ\): \[ \sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \] ### Step 3: Substitute back into the inverse sine function Now substitute this back into the inverse sine function: \[ \theta = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \] ### Step 4: Determine the angle corresponding to the sine value The angle whose sine is \(\frac{\sqrt{3}}{2}\) in the range of \([-90^\circ, 90^\circ]\) is: \[ \theta = 60^\circ \] ### Step 5: Convert the angle back to radians Finally, we convert \(60^\circ\) to radians: \[ \theta = 60^\circ \times \frac{\pi}{180} = \frac{\pi}{3} \] Thus, the value of \( \theta \) is: \[ \theta = \frac{\pi}{3} \] ### Final Answer The value of \( \theta \) is \( \frac{\pi}{3} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta+sin phi=(1)/(4) and cos theta+cos phi=(1)/(5) then value of sin(theta+phi) is

If sin5 theta=5sin theta-20sin^(3)theta+k sin^(5)theta then the value of k is

if sin theta-cos theta=(1)/(2) then the value of (1)/(sin theta+cos theta)

Let f(theta)=sin(tan^(-1)((sin theta)/(sqrt(cos2 theta)))), wher e-(pi)/(4)

If sin theta+cos theta=1, then the value of sin2 theta is equal to

If sin theta_(1)+sin theta_(2)+sin theta_(3), then find the value of cos theta_(1)+cos theta_(2)+cos theta_(3)

Let f(theta)=(1+sin^(2)theta)(2-sin^(2)theta) . Then for all values of theta

(cos ec theta+sin theta)/(cos ec theta-sin theta)=(5)/(2), find value of sin theta

If sin theta + cos theta =1, the value of sin theta cos theta is