Home
Class 12
MATHS
If tan(sec^(-1)x)=sin("cos"^(-1)1/sqrt5)...

If `tan(sec^(-1)x)=sin("cos"^(-1)1/sqrt5)`, then x is equal to:

A

`+-3/sqrt5`

B

`+-sqrt5/3`

C

`+-sqrt3/3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\sec^{-1} x) = \sin(\cos^{-1} \frac{1}{\sqrt{5}}) \), we will follow these steps: ### Step 1: Understand the left-hand side We start with the left-hand side, \( \tan(\sec^{-1} x) \). Using the identity: \[ \tan(\sec^{-1} x) = \sqrt{x^2 - 1} \] This is derived from the right triangle definition where \( \sec \theta = x \) implies that the adjacent side is 1 and the hypotenuse is \( x \). Therefore, the opposite side can be calculated using the Pythagorean theorem: \[ \text{Opposite} = \sqrt{x^2 - 1} \] Thus, we have: \[ \tan(\sec^{-1} x) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{\sqrt{x^2 - 1}}{1} = \sqrt{x^2 - 1} \] ### Step 2: Understand the right-hand side Now, we analyze the right-hand side, \( \sin(\cos^{-1} \frac{1}{\sqrt{5}}) \). Using the identity: \[ \sin(\cos^{-1} y) = \sqrt{1 - y^2} \] Substituting \( y = \frac{1}{\sqrt{5}} \): \[ \sin(\cos^{-1} \frac{1}{\sqrt{5}}) = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 3: Set the two sides equal Now we equate both sides: \[ \sqrt{x^2 - 1} = \frac{2}{\sqrt{5}} \] ### Step 4: Square both sides To eliminate the square root, we square both sides: \[ x^2 - 1 = \left(\frac{2}{\sqrt{5}}\right)^2 \] Calculating the right-hand side: \[ x^2 - 1 = \frac{4}{5} \] ### Step 5: Solve for \( x^2 \) Now, we add 1 to both sides: \[ x^2 = \frac{4}{5} + 1 = \frac{4}{5} + \frac{5}{5} = \frac{9}{5} \] ### Step 6: Solve for \( x \) Taking the square root of both sides gives: \[ x = \pm \sqrt{\frac{9}{5}} = \pm \frac{3}{\sqrt{5}} \] ### Final Answer Thus, the values of \( x \) are: \[ x = \frac{3}{\sqrt{5}} \quad \text{or} \quad x = -\frac{3}{\sqrt{5}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

tan (sec ^ (- 1) x) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to