Home
Class 12
MATHS
The differential coefficient of the func...

The differential coefficient of the function `cot^3 2x` is:

A

`-6 cot^2 2x cdot cosec^2 2x`

B

`-3 cot^2 2x cdot cosec^2 2x`

C

`-6 cot^2 2x cdot cosec 2x`

D

`-3 cot^2 2x cdot cosec 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( y = \cot^3(2x) \), we will use the chain rule and the derivative of the cotangent function. Here’s a step-by-step solution: ### Step 1: Identify the function We start with the function: \[ y = \cot^3(2x) \] ### Step 2: Apply the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( u^n \) is \( n \cdot u^{n-1} \cdot \frac{du}{dx} \). Here, \( u = \cot(2x) \) and \( n = 3 \). So, we have: \[ \frac{dy}{dx} = 3 \cdot \cot^2(2x) \cdot \frac{d}{dx}(\cot(2x)) \] ### Step 3: Differentiate \( \cot(2x) \) Next, we need to differentiate \( \cot(2x) \). The derivative of \( \cot(x) \) is \( -\csc^2(x) \). Therefore, using the chain rule again: \[ \frac{d}{dx}(\cot(2x)) = -\csc^2(2x) \cdot \frac{d}{dx}(2x) = -\csc^2(2x) \cdot 2 \] ### Step 4: Substitute back into the derivative Now, substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 3 \cdot \cot^2(2x) \cdot (-2 \csc^2(2x)) \] \[ \frac{dy}{dx} = -6 \cot^2(2x) \csc^2(2x) \] ### Final Result Thus, the differential coefficient of the function \( \cot^3(2x) \) is: \[ \frac{dy}{dx} = -6 \cot^2(2x) \csc^2(2x) \]
Promotional Banner