Home
Class 12
MATHS
If y=(1+x)(1+x^2)(1+x^4), then dy/dx at ...

If `y=(1+x)(1+x^2)(1+x^4)`, then dy/dx at x=1 is:

A

20

B

28

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) at \( x = 1 \) for the function \( y = (1+x)(1+x^2)(1+x^4) \), we will follow these steps: ### Step 1: Expand the function \( y \) We start with the expression: \[ y = (1+x)(1+x^2)(1+x^4) \] First, we can multiply the first two factors: \[ (1+x)(1+x^2) = 1 + x + x^2 + x^3 \] Now, we multiply this result by the third factor \( (1+x^4) \): \[ y = (1 + x + x^2 + x^3)(1 + x^4) \] Expanding this, we get: \[ y = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 \] ### Step 2: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 + 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 \] Thus, \[ \frac{dy}{dx} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 \] ### Step 3: Evaluate \( \frac{dy}{dx} \) at \( x = 1 \) Now we substitute \( x = 1 \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=1} = 1 + 2(1) + 3(1^2) + 4(1^3) + 5(1^4) + 6(1^5) + 7(1^6) \] Calculating this gives: \[ = 1 + 2 + 3 + 4 + 5 + 6 + 7 \] \[ = 28 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = 1 \) is: \[ \boxed{28} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1)/(1+x+x^(2)) , then (dy)/(dx)=

y=(1+x)/(1-x) then (dy)/(dx)

If y=cot^(-1)(1+x^(2)-x), then (dy)/(dx)=

y=(1+x^2)/(1-x^2) , find dy/dx

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

If y=((1-x)/(x))^(2)," then: "(dy)/(dx)=

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

" 4.If "y=x+(1)/(x)," then "(dy)/(dx)=

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=