Home
Class 12
MATHS
If y=ae^(mx)+be^(-mx) then (d^2y)/(dx...

If `y=ae^(mx)+be^(-mx)` then `(d^2y)/(dx^2)` is

A

my

B

`m^2y`

C

y

D

`y/(m^2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=Ae^(mx)+Be^(nx) ,then (d^(2)y)/(dx^(2)) is equal to , (a) (m+n)(dy)/(dx)+mny , (b) (m+n)(dy)/(dx)-mny , (c) -(m+n)(dy)/(dx)+mny , (d) None of these

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ln(e^(mx)+e^(-mx)) , then what is (dy)/(dx) at x = 0 equal to ?

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y=ae^(mx)+bcosmx then prove that (d^2y)/(dx^2)+m^2y=2am^2e^(mx)

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-((m+n)dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0