Home
Class 12
MATHS
Find dy/dx, if y=sin^3 x cosx...

Find dy/dx, if `y=sin^3 x cosx`

A

`sin^2 x(3 cos^2 x-sin^2 x)`

B

`3cos^3 (1-sin^2 x)`

C

`3 cos^4 x`

D

`3sin^4 x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the function \( y = \sin^3 x \cos x \), we will use the product rule and the chain rule of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = \sin^3 x \cos x \). This is a product of two functions: \( u = \sin^3 x \) and \( v = \cos x \). 2. **Apply the Product Rule**: The product rule states that if \( y = uv \), then \( \frac{dy}{dx} = u'v + uv' \). Here, \( u = \sin^3 x \) and \( v = \cos x \). 3. **Differentiate \( u \)**: To differentiate \( u = \sin^3 x \), we will use the chain rule: \[ u' = 3 \sin^2 x \cdot \frac{d}{dx}(\sin x) = 3 \sin^2 x \cos x \] 4. **Differentiate \( v \)**: The derivative of \( v = \cos x \) is: \[ v' = -\sin x \] 5. **Substitute into the Product Rule**: Now we substitute \( u' \), \( v \), \( u \), and \( v' \) into the product rule: \[ \frac{dy}{dx} = u'v + uv' = (3 \sin^2 x \cos x)(\cos x) + (\sin^3 x)(-\sin x) \] 6. **Simplify the expression**: \[ \frac{dy}{dx} = 3 \sin^2 x \cos^2 x - \sin^4 x \] 7. **Final result**: Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 3 \sin^2 x \cos^2 x - \sin^4 x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx , if y=Sin( x^x)

FInd (dy)/(dx) of y=sin^3x

Find (dy)/(dx) if,y=sin x sin2x sin3x sin4x

Find (dy)/(dx) if y+ sin y= cos x

Find dy/dx if 2x+3y=cosx .

find dy/dx if y=sqrt(x)sin^3x+sinsqrtx