Home
Class 12
MATHS
If y=e^x tan^(-1)x, then dy/dx is:...

If `y=e^x tan^(-1)x`, then dy/dx is:

A

`e^x[tan^(-1)x+1/(1+x^2)]`

B

`e^x[tan^(-1)x+1/(1-x^2)]`

C

`e^x[tan^(-1)x+1/sqrt(1+x^2)]`

D

`e^x[tan^(-1)x-1/(1+x^2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^x \tan^{-1}(x) \), we will use the product rule of differentiation. The product rule states that if you have a function that is the product of two functions \( u \) and \( v \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = u'v + uv' \] ### Step-by-step Solution: 1. **Identify the functions**: - Let \( u = e^x \) - Let \( v = \tan^{-1}(x) \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) with respect to \( x \) is: \[ u' = \frac{d}{dx}(e^x) = e^x \] - The derivative of \( v \) with respect to \( x \) is: \[ v' = \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] 3. **Apply the product rule**: - Now, using the product rule: \[ \frac{dy}{dx} = u'v + uv' \] - Substitute \( u \), \( u' \), \( v \), and \( v' \): \[ \frac{dy}{dx} = e^x \tan^{-1}(x) + e^x \cdot \frac{1}{1 + x^2} \] 4. **Factor out \( e^x \)**: - We can factor out \( e^x \) from both terms: \[ \frac{dy}{dx} = e^x \left( \tan^{-1}(x) + \frac{1}{1 + x^2} \right) \] ### Final Answer: Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^x \left( \tan^{-1}(x) + \frac{1}{1 + x^2} \right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)x ,then (dy)/(dx) is

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

if y=sec(tan^(-1)x)then(dy)/(dx) is

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to

if y=tan(sin^(-1)x) then (dy)/(dx)

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

If y=e^((tan^(-1)x)^(3) then find (dy)/(dx)