Home
Class 12
MATHS
The value of cos^(-1)("cos"(5pi)/3)+sin^...

The value of `cos^(-1)("cos"(5pi)/3)+sin^(-1)("sin"(5pi)/3)` is :

A

`pi/2`

B

`(5pi)/3`

C

`(10pi)/3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) \), we will follow these steps: ### Step 1: Simplify \( 5\pi/3 \) First, we need to simplify \( 5\pi/3 \) to find its equivalent angle within the range of \( [0, 2\pi) \): \[ 5\pi/3 = 2\pi - \pi/3 \] This means \( 5\pi/3 \) is equivalent to \( -\pi/3 \) when considering the unit circle. ### Step 2: Calculate \( \cos(5\pi/3) \) Using the cosine function: \[ \cos(5\pi/3) = \cos(2\pi - \pi/3) = \cos(\pi/3) = \frac{1}{2} \] ### Step 3: Calculate \( \sin(5\pi/3) \) Using the sine function: \[ \sin(5\pi/3) = \sin(2\pi - \pi/3) = -\sin(\pi/3) = -\frac{\sqrt{3}}{2} \] ### Step 4: Evaluate \( \cos^{-1}(\cos(5\pi/3)) \) Now we can evaluate \( \cos^{-1}(\cos(5\pi/3)) \): \[ \cos^{-1}(\cos(5\pi/3)) = \cos^{-1}\left(\frac{1}{2}\right) \] Since \( \cos^{-1}(x) \) gives us the angle in the range \( [0, \pi] \), we find: \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] ### Step 5: Evaluate \( \sin^{-1}(\sin(5\pi/3)) \) Next, we evaluate \( \sin^{-1}(\sin(5\pi/3)) \): \[ \sin^{-1}(\sin(5\pi/3)) = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \] Since \( \sin^{-1}(x) \) gives us the angle in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), we find: \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \] ### Step 6: Combine the results Now we can combine the results from Steps 4 and 5: \[ \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) = \frac{\pi}{3} - \frac{\pi}{3} = 0 \] ### Final Answer Thus, the value of \( \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(cos""(3pi)/(5)) is

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

The value of sin^(-1)(cos.(53pi)/(5)) is

The value of cos^(-1)(cos((pi)/(2)))+cos^(-1)(sin((2pi)/(3))) is

The principal value of cos^(-1)(cos 2pi/3)+ sin^(-1) sin(2pi/3) is

cos^(-1)(cos((5 pi)/(3)))+sin^(-1)(sin((5 pi)/(3)))=

cos^(-1)(cos(5 pi/(3))+sin^(-1)(cos(5 pi/(3))=