Home
Class 12
MATHS
If A=[a(ij)](4xx3), where a(ij)=(i-j)/(i...

If `A=[a_(ij)]_(4xx3)`, where `a_(ij)=(i-j)/(i+j)`, then find A.

A

`[(0,-1//3,-1//2),(1//2,0,1//5),(1//3,1//5,0),(3//5,1//3,1//7)]`

B

`[(0,-1//3,-1//2),(1//3,0,-1//5),(1//2,1//5,0),(3//5,1//3,1//7)]`

C

`[(0,-3,-1//2),(2,0,5),(3,5,0),(3//5,3,7)]`

D

`[(0,1//3,1//2),(-1//3,0,1//5),(-1//2,-1//5,0),(-3//5,-1//3,-1//7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A = [a_{ij}]_{4 \times 3} \) where \( a_{ij} = \frac{i - j}{i + j} \), we will calculate the elements of the matrix for \( i = 1, 2, 3, 4 \) and \( j = 1, 2, 3 \). ### Step 1: Define the matrix dimensions The matrix \( A \) has 4 rows and 3 columns, so we will calculate \( a_{ij} \) for \( i = 1, 2, 3, 4 \) and \( j = 1, 2, 3 \). ### Step 2: Calculate the elements of the matrix Now we will compute each element of the matrix \( A \): - For \( i = 1 \): - \( a_{11} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \) - \( a_{12} = \frac{1 - 2}{1 + 2} = \frac{-1}{3} \) - \( a_{13} = \frac{1 - 3}{1 + 3} = \frac{-2}{4} = -\frac{1}{2} \) - For \( i = 2 \): - \( a_{21} = \frac{2 - 1}{2 + 1} = \frac{1}{3} \) - \( a_{22} = \frac{2 - 2}{2 + 2} = \frac{0}{4} = 0 \) - \( a_{23} = \frac{2 - 3}{2 + 3} = \frac{-1}{5} \) - For \( i = 3 \): - \( a_{31} = \frac{3 - 1}{3 + 1} = \frac{2}{4} = \frac{1}{2} \) - \( a_{32} = \frac{3 - 2}{3 + 2} = \frac{1}{5} \) - \( a_{33} = \frac{3 - 3}{3 + 3} = \frac{0}{6} = 0 \) - For \( i = 4 \): - \( a_{41} = \frac{4 - 1}{4 + 1} = \frac{3}{5} \) - \( a_{42} = \frac{4 - 2}{4 + 2} = \frac{2}{6} = \frac{1}{3} \) - \( a_{43} = \frac{4 - 3}{4 + 3} = \frac{1}{7} \) ### Step 3: Assemble the matrix Now we can assemble the matrix \( A \) using the calculated elements: \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix} \] ### Final Result Thus, the matrix \( A \) is: \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.