Home
Class 12
MATHS
Find the cofactors of elements a(12),a(2...

Find the cofactors of elements `a_(12),a_(22),a_(32)` respectively of the matrix `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`:

A

`0,2,-2 sin theta`

B

`2,0,2 sin theta`

C

`2,0,-2 sin theta`

D

`-2 sin theta, 2, 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cofactors of the elements \( a_{12}, a_{22}, a_{32} \) of the given matrix \[ A = \begin{pmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{pmatrix}, \] we will follow these steps: ### Step 1: Understand the Cofactor Definition The cofactor \( C_{ij} \) of an element \( a_{ij} \) is defined as: \[ C_{ij} = (-1)^{i+j} M_{ij} \] where \( M_{ij} \) is the minor of the element \( a_{ij} \), which is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column from the original matrix. ### Step 2: Calculate \( C_{12} \) 1. **Identify \( a_{12} \)**: The element in the first row and second column is \( \sin \theta \). 2. **Find the minor \( M_{12} \)**: Remove the first row and second column: \[ M_{12} = \begin{vmatrix} -\sin \theta & \sin \theta \\ -1 & 1 \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{12} = (-\sin \theta)(1) - (\sin \theta)(-1) = -\sin \theta + \sin \theta = 0 \] 4. **Calculate the cofactor**: \[ C_{12} = (-1)^{1+2} M_{12} = (-1)^{3} \cdot 0 = 0 \] ### Step 3: Calculate \( C_{22} \) 1. **Identify \( a_{22} \)**: The element in the second row and second column is \( 1 \). 2. **Find the minor \( M_{22} \)**: Remove the second row and second column: \[ M_{22} = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{22} = (1)(1) - (1)(-1) = 1 + 1 = 2 \] 4. **Calculate the cofactor**: \[ C_{22} = (-1)^{2+2} M_{22} = 1 \cdot 2 = 2 \] ### Step 4: Calculate \( C_{32} \) 1. **Identify \( a_{32} \)**: The element in the third row and second column is \( -\sin \theta \). 2. **Find the minor \( M_{32} \)**: Remove the third row and second column: \[ M_{32} = \begin{vmatrix} 1 & 1 \\ -\sin \theta & \sin \theta \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{32} = (1)(\sin \theta) - (1)(-\sin \theta) = \sin \theta + \sin \theta = 2\sin \theta \] 4. **Calculate the cofactor**: \[ C_{32} = (-1)^{3+2} M_{32} = (-1)^{5} \cdot (2\sin \theta) = -2\sin \theta \] ### Final Results The cofactors are: - \( C_{12} = 0 \) - \( C_{22} = 2 \) - \( C_{32} = -2\sin \theta \) ### Summary of Cofactors Thus, the cofactors of the elements \( a_{12}, a_{22}, a_{32} \) are \( 0, 2, -2\sin \theta \) respectively.
Promotional Banner

Similar Questions

Explore conceptually related problems

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

Simplify: (1+tan^(2)theta)(1-sintheta)(1+sintheta)

If Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}|"prove that" 2lt=Deltalt=4.

Smlplify : (1+tan^(2)theta)(1-sintheta)(1+sintheta)

Prove that- 1-cos^2theta/(1+sintheta)=sintheta

Prove that : (sectheta-tantheta)^(2)=(1-sintheta)/(1+sintheta)

sqrt((1+sintheta)/(1-sintheta)) = __.

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is