Home
Class 12
MATHS
Let A=[(1,2),(3,-5)],B=[(1,0),(0,2)] and...

Let `A=[(1,2),(3,-5)],B=[(1,0),(0,2)]` and X be a matrix such that A=BX, then X is equal to:

A

`1/2[(2,4),(3,-5)]`

B

`1/2[(-2,4),(3,5)]`

C

`[(2,4),(3,-5)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( X \) such that \( A = BX \), we can express \( X \) as \( X = A B^{-1} \). We will follow these steps to find \( X \). ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( B \) The determinant of matrix \( B \) is calculated as follows: \[ \text{det}(B) = (1)(2) - (0)(0) = 2 \] ### Step 3: Calculate the adjoint of matrix \( B \) The adjoint of matrix \( B \) is obtained by swapping the diagonal elements and changing the sign of the off-diagonal elements: \[ \text{adj}(B) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Calculate the inverse of matrix \( B \) The inverse of matrix \( B \) is given by: \[ B^{-1} = \frac{1}{\text{det}(B)} \cdot \text{adj}(B) = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] ### Step 5: Calculate \( X = A B^{-1} \) Now we multiply matrix \( A \) with \( B^{-1} \): \[ X = A B^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] Calculating the product: \[ X = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot \frac{1}{2} \\ 3 \cdot 1 + (-5) \cdot 0 & 3 \cdot 0 + (-5) \cdot \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & -\frac{5}{2} \end{pmatrix} \] ### Final Result Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 1 & 1 \\ 3 & -\frac{5}{2} \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[1 2 3-5] and B=[1 0 0 2] and X be a matrix such that A=B X , then X is equal to 1/2[2 4 3-5] (b) 1/2[-2 4 3 5] (c) [2 4 3-5] (d) none of these

If A=[[1,23,-5]] and B=[[1,00,2]] and X is a matrix such that A=BX, then X=

If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal to

If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such that A^(-1) X = B

If A=[(1,0),(3,-1),(-5,2)] and B=[(1,-2),(-2,2),(1,1)] , then find the matrix 'X' such that 3A + X = 5B.

Let A=[(-1, 2, -3),(-2,0,3),(3,-3, 1)] be a matrix, then |a| adj(A^(-1)) is equal to

A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.