Home
Class 12
MATHS
Find the value of sin^(-1)("sin"(3pi)/5)...

Find the value of `sin^(-1)("sin"(3pi)/5)`

A

`(2pi)/5`

B

`pi/4`

C

`(3pi)/5`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}(\sin(3\pi/5)) \), we will follow these steps: ### Step 1: Identify the angle We start with the angle \( \frac{3\pi}{5} \). ### Step 2: Determine the sine value Calculate \( \sin\left(\frac{3\pi}{5}\right) \). The sine function is positive in the second quadrant, where \( \frac{3\pi}{5} \) lies. ### Step 3: Use the sine inverse function The sine inverse function \( \sin^{-1}(x) \) gives us an angle in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Since \( \frac{3\pi}{5} \) is not in this range, we need to find an equivalent angle that is. ### Step 4: Find the equivalent angle The sine function is periodic, and we can use the property that: \[ \sin(\theta) = \sin(\pi - \theta) \] Thus, we can find an angle in the range of \( \sin^{-1} \) that has the same sine value: \[ \sin\left(\frac{3\pi}{5}\right) = \sin\left(\pi - \frac{3\pi}{5}\right) = \sin\left(\frac{2\pi}{5}\right) \] ### Step 5: Calculate the sine inverse Now we can write: \[ \sin^{-1}(\sin(3\pi/5)) = \sin^{-1}(\sin(2\pi/5)) \] Since \( \frac{2\pi}{5} \) is within the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we have: \[ \sin^{-1}(\sin(2\pi/5)) = \frac{2\pi}{5} \] ### Final Answer Thus, the value of \( \sin^{-1}(\sin(3\pi/5)) \) is: \[ \frac{2\pi}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)((sin(3 pi))/(5))

Find the value of sin^(-1) (sin. (4pi)/5)

Find the value of sin^(-1)("sin"(2pi)/(3))+cos^(-1)("cos"(4pi)/(3))

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the value of sin^(-1)(sin((2pi)/3))

Find the value of sin^(-1)(sin(2 pi)/(3))

Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .

Find the value of sin^(-1)(sin7 pi/4)

Find the value of sin^(-1)(cos(pi/5))

Find the value of : sin ^(-1)(sin ((5pi )/(4)) )