Home
Class 12
MATHS
If [(3,-2),(-1//6,4)][(2x),(1)]+2[(-4),(...

If `[(3,-2),(-1//6,4)][(2x),(1)]+2[(-4),(5)]=4[(2),(y)]` then find the values of x and y.

A

`(13)/4,1`

B

0,3

C

`3,(13)/4`

D

3,0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we will break it down step by step. ### Step 1: Write down the equation The equation is given as: \[ \begin{bmatrix} 3 & -2 \\ -\frac{1}{6} & 4 \end{bmatrix} \begin{bmatrix} 2x \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ y \end{bmatrix} \] ### Step 2: Multiply the matrices First, we will multiply the 2x2 matrix with the 2x1 matrix: \[ \begin{bmatrix} 3 & -2 \\ -\frac{1}{6} & 4 \end{bmatrix} \begin{bmatrix} 2x \\ 1 \end{bmatrix} \] Calculating the first row: \[ 3(2x) + (-2)(1) = 6x - 2 \] Calculating the second row: \[ -\frac{1}{6}(2x) + 4(1) = -\frac{2x}{6} + 4 = -\frac{x}{3} + 4 \] So, the result of the multiplication is: \[ \begin{bmatrix} 6x - 2 \\ -\frac{x}{3} + 4 \end{bmatrix} \] ### Step 3: Multiply the scalar with the second matrix Next, we will calculate \(2 \begin{bmatrix} -4 \\ 5 \end{bmatrix}\): \[ 2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} -8 \\ 10 \end{bmatrix} \] ### Step 4: Add the results Now, we add the two results: \[ \begin{bmatrix} 6x - 2 \\ -\frac{x}{3} + 4 \end{bmatrix} + \begin{bmatrix} -8 \\ 10 \end{bmatrix} = \begin{bmatrix} (6x - 2 - 8) \\ (-\frac{x}{3} + 4 + 10) \end{bmatrix} = \begin{bmatrix} 6x - 10 \\ -\frac{x}{3} + 14 \end{bmatrix} \] ### Step 5: Calculate the right side Now calculate the right side: \[ 4 \begin{bmatrix} 2 \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix} \] ### Step 6: Set the matrices equal Now we set the two results equal to each other: \[ \begin{bmatrix} 6x - 10 \\ -\frac{x}{3} + 14 \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix} \] ### Step 7: Create equations From the equality of the matrices, we can create two equations: 1. \(6x - 10 = 8\) 2. \(-\frac{x}{3} + 14 = 4y\) ### Step 8: Solve for \(x\) From the first equation: \[ 6x - 10 = 8 \implies 6x = 18 \implies x = 3 \] ### Step 9: Substitute \(x\) into the second equation Now substitute \(x = 3\) into the second equation: \[ -\frac{3}{3} + 14 = 4y \implies -1 + 14 = 4y \implies 13 = 4y \implies y = \frac{13}{4} \] ### Final Answer Thus, the values of \(x\) and \(y\) are: \[ x = 3, \quad y = \frac{13}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If [{:(x+2y,-y),(3x,4):}]=[{:(-4,3),(6,4):}] , find the values of x and y.

If |[2,3],[y,x]|=4 and |[x,y],[4,2]|=7 then find the value of x and y .

5/(x-1)+1/(y-2)=2 and 6/(x-1)-3/(y-2)=1 then find the values of x and y

If [(2,-1),(3,4)][(5,2),(7,4)]=[(3,x),(y,22)] . Then the value of x + y is:

If sin^(-1)(x^(2)-4x+5)+cos^(-1)(y^(2)-2y+2)=(pi)/(2) then find the value of x and y.

If x = 1, y = 2, z = 5 , then find the value of 3x – 2y + 4z.

If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y

If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7) , then find the value of z.