Home
Class 12
MATHS
If y=e^(-x)(6 cos ax+5 sin bx) then dy/d...

If `y=e^(-x)(6 cos ax+5 sin bx)` then `dy/dx`=

A

`dy/dx=e^(-x)[-6asinax+5bcosbx-6cosax-5sinbx]`

B

`dy/dx=e^(-x)[6asinax-5bcosbx-6cosax-5sinbx]`

C

`dy/dx=e^(-x)[-6asinax+5bcosbx+6cosax+5sinbx]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{-x}(6 \cos(ax) + 5 \sin(bx)) \), we will use the product rule of differentiation. The product rule states that if \( y = u \cdot v \), then the derivative \( \frac{dy}{dx} = u'v + uv' \), where \( u' \) and \( v' \) are the derivatives of \( u \) and \( v \) respectively. ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^{-x} \) - \( v = 6 \cos(ax) + 5 \sin(bx) \) ### Step 2: Differentiate \( u \) and \( v \) 1. Differentiate \( u \): \[ u' = \frac{d}{dx}(e^{-x}) = -e^{-x} \] 2. Differentiate \( v \): \[ v' = \frac{d}{dx}(6 \cos(ax) + 5 \sin(bx)) = 6 \cdot (-\sin(ax) \cdot a) + 5 \cdot \cos(bx) \cdot b \] Simplifying this gives: \[ v' = -6a \sin(ax) + 5b \cos(bx) \] ### Step 3: Apply the product rule Now, apply the product rule: \[ \frac{dy}{dx} = u'v + uv' \] Substituting the values we found: \[ \frac{dy}{dx} = (-e^{-x})(6 \cos(ax) + 5 \sin(bx)) + (e^{-x})(-6a \sin(ax) + 5b \cos(bx)) \] ### Step 4: Factor out \( e^{-x} \) We can factor out \( e^{-x} \): \[ \frac{dy}{dx} = e^{-x} \left( - (6 \cos(ax) + 5 \sin(bx)) - 6a \sin(ax) + 5b \cos(bx) \right) \] ### Step 5: Combine the terms Combining the terms inside the parentheses: \[ \frac{dy}{dx} = e^{-x} \left( -6 \cos(ax) - 5 \sin(bx) - 6a \sin(ax) + 5b \cos(bx) \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^{-x} \left( -6 \cos(ax) - 5 \sin(bx) - 6a \sin(ax) + 5b \cos(bx) \right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(e^(2x)cos x)/(x sin x) then (dy)/(dx)=

If y=cos (sin x ),then (dy)/(dx) =

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y=(cos x-sin x)/(cos x+sin x) then ((d^(2)y)/(dx^(2)))/((dy)/(dx))=

If y=tan^(-1)[(5cos x-12sin x)/(12cos x+5sin x)], then (dy)/(dx)=

If y=(cos x - sin x)/(cos x + sinx) , then ((d^(2)y)/(dx^(2)))/((dy)/(dx))

If y=e^(x)+(sin x)^(x) , then (dy)/(dx) = ?

If cos (x+y)=y sin x then find dx/dy

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

int (e ^ (ax) + sin bx) dx