Home
Class 12
MATHS
(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)s...

`(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))]` is equal to

A

`1/(2sqrt(x(1-x)))-1/sqrt(1-x^2)`

B

`1/(sqrt(1-{xsqrt(1-x)-sqrt(x(1-x^2))}^2))`

C

`1/(sqrt(1-x^2)-2sqrt(x(1-x)))`

D

`1/(sqrt(x(1-x)(1-x^2)))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)[sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))]=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

(d)/(dx)(ln sin sqrt(x))=

(d)/(dx)(sin^(-1)x+cos^(-1)x) is equal to