Home
Class 12
MATHS
If a(ij)=|2i + 3j^(2)|, then matrix A(2x...

If `a_(ij)=|2i + 3j^(2)|,` then matrix `A_(2xx2) = [a_(ij)]` will be:

A

`[(5,-14),(7,16)]`

B

`[(5,14),(-7,16)]`

C

`[(5,14),(7,16)]`

D

`[(5,14),(7,-16)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(j)=0(i!=j) and a_(ij)=4(i=j), then the matrix A=[a_(ij)]_(n xx n) is a matrix

Find the value of a_(23)+a_(32) in the matrix A=[a_(ij)]_(3xx3) where a_(ij)={{:(|2i-j|,"if "igtj),(-i+2j+3,"if "iltj):}

Given A=[a_(ij)]3xx3 be a matrix, where a_(ij)={i-j if i != j and i^2 if 1=j If C_(ij) be the cofactor of a_(ij), in the matrix A and B = [b_(ij)]3xx3 be a matrix such that bch that b_(ij)=sum_(k=1)^3 a_(ij) c_(jk), then the value of [(3sqrt(det B))/8] is equal to(where denotes greatest integer function and det B denotes determinant value of B)

If A=[a_(ij)] is a 2xx2 matrix such that a_(ij)=i+2j, write A

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is

Write the element a_(12) of the matrix A=[a_(ij)]_(2xx2) , whose elements a_(ij) are given by a_(ij)=e^(2ix)sinjx .

If A is a square matrix for which a_(ij)=i^(2)-j^(2) , then matrix A is