Home
Class 12
MATHS
Find the value of sec^(-1)2+sin^(-1)(1/s...

Find the value of `sec^(-1)2+sin^(-1)(1/sqrt2)`

A

`(5pi)/(12)`

B

`(7pi)/(12)`

C

`pi/4`

D

`(3pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \), we can follow these steps: ### Step 1: Evaluate \( \sec^{-1}(2) \) The function \( \sec^{-1}(x) \) gives us the angle \( \theta \) such that \( \sec(\theta) = x \). For \( \sec^{-1}(2) \): \[ \sec(\theta) = 2 \implies \theta = \frac{\pi}{3} \] This is because \( \sec\left(\frac{\pi}{3}\right) = \frac{1}{\cos\left(\frac{\pi}{3}\right)} = \frac{1}{\frac{1}{2}} = 2 \). ### Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) The function \( \sin^{-1}(x) \) gives us the angle \( \phi \) such that \( \sin(\phi) = x \). For \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \): \[ \sin(\phi) = \frac{1}{\sqrt{2}} \implies \phi = \frac{\pi}{4} \] This is because \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). ### Step 3: Add the two angles Now we can add the two angles we found: \[ \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{3} + \frac{\pi}{4} \] ### Step 4: Find a common denominator and simplify To add \( \frac{\pi}{3} \) and \( \frac{\pi}{4} \), we need a common denominator. The least common multiple of 3 and 4 is 12. Convert each fraction: \[ \frac{\pi}{3} = \frac{4\pi}{12} \] \[ \frac{\pi}{4} = \frac{3\pi}{12} \] Now add them: \[ \frac{4\pi}{12} + \frac{3\pi}{12} = \frac{7\pi}{12} \] ### Final Answer Thus, the value of \( \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) is: \[ \frac{7\pi}{12} \]
Promotional Banner