Home
Class 12
MATHS
If A^(3)=0 then I+A+A^2 equals...

If `A^(3)=0` then `I+A+A^2 ` equals

A

I-A

B

`(I-A)^(-1)`

C

`(I+A)^(-1)`

D

I+A

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-3A+2I=0 then

If A^(2)-3A+2I=0 , then A =

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)

If A is square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (A)A(B)I-A(C)I(D)3A

If A is a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (a) A (b) I-A(c)I(d)3A

If a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to A(b)I-A(c)I (d) 3A

If [(x,1),(1,0)] and A^(2)=I , then A^(-1) is equal to

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals