Home
Class 12
MATHS
The value of the determinant |(x,x+1),(x...

The value of the determinant `|(x,x+1),(x-1,1)|` is:

A

1

B

`-1`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(x, x+1), (x-1, 1)| \), we can follow these steps: ### Step 1: Write down the determinant The determinant of a 2x2 matrix is given by the formula: \[ |A| = ad - bc \] where \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). In our case, we have: \[ A = \begin{pmatrix} x & x+1 \\ x-1 & 1 \end{pmatrix} \] Thus, \( a = x \), \( b = x + 1 \), \( c = x - 1 \), and \( d = 1 \). ### Step 2: Apply the determinant formula Using the formula for the determinant, we compute: \[ |A| = x \cdot 1 - (x + 1)(x - 1) \] ### Step 3: Simplify the expression Now, we need to simplify the expression: \[ |A| = x - (x + 1)(x - 1) \] Next, we expand \( (x + 1)(x - 1) \): \[ (x + 1)(x - 1) = x^2 - 1 \] So, substituting this back into our determinant gives: \[ |A| = x - (x^2 - 1) \] ### Step 4: Further simplify Now, we can simplify this expression: \[ |A| = x - x^2 + 1 \] Rearranging the terms, we get: \[ |A| = -x^2 + x + 1 \] ### Final Result Thus, the value of the determinant is: \[ |A| = -x^2 + x + 1 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

If 1, log_(10)(4^(x)-2) and log_(10)(4^(x)+(18)/(5)) are in arithmetic progression for a real number x, then the value of the determinant |(2(x-(1)/(2)), x-1,x^(2)),(1,0,x),(x,1,0)| is equal to:

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

" 0.The value of the determinant "|[1,x,x^(2)],[1,b,b^(2)],[1,c,c^(2)]|" is: "

Value of the determinant |(x,1,1),(0,1+x, 1),(-y, 1+x, 1+y)| is (A) xy (B) xy(x+2) (C) x(x+1)(y+1) (D) xy(x+1)

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if