Home
Class 12
MATHS
Find the value of |(-8,6),(5,4)|...

Find the value of `|(-8,6),(5,4)|`

A

`-62`

B

`-30`

C

`-32`

D

`-62`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant of the matrix formed by the points \((-8, 6)\) and \((5, 4)\), we can represent this as a 2x2 matrix: \[ \begin{pmatrix} -8 & 6 \\ 5 & 4 \end{pmatrix} \] The determinant \( |A| \) of a 2x2 matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is calculated using the formula: \[ |A| = ad - bc \] Here, we can identify: - \( a = -8 \) - \( b = 6 \) - \( c = 5 \) - \( d = 4 \) Now, we can substitute these values into the determinant formula: 1. Calculate \( ad \): \[ ad = (-8) \times 4 = -32 \] 2. Calculate \( bc \): \[ bc = 6 \times 5 = 30 \] 3. Now, substitute these results into the determinant formula: \[ |A| = ad - bc = -32 - 30 \] 4. Simplify the expression: \[ |A| = -32 - 30 = -62 \] Thus, the value of the determinant \( |(-8, 6),(5, 4)| \) is \(-62\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : Find the value of ( 7/4 - 8/5 )

Find the value of p in: [(1/6)^(4)]^(p)=(1/6)^(4)times(1/6)^(8)

Find the value of ( 5/8 ) ( 5/8 )^2

If 4^(x)=256, then find the value of 6^(2x-8)

Find the value of (-6)/7divide 8/4

Find the value of: 5^0-6^0+8^0

If [{:(a+4,3b),(8,-6):}]=[{:(2a+2,b+2),(" "8,a-8b):}] , then find the value of (a-2b) .

if U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of (B - C)'.

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of (B -C)' .

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)