Home
Class 12
MATHS
The value of cot(sin^(-1)x) is :...

The value of `cot(sin^(-1)x)` is :

A

`(sqrt(1-x^2))/(x)`

B

`(x)/(sqrt(1-x^2))`

C

`(2x)/(sqrt(1-x^2))`

D

`(sqrt(1-x^2))/(2x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

If cosec x-cot x=(1)/(3), where x!=0, then the value of cos^(2)x-sin^(2)x is

The value of cot[(1)/(2)(sin^(-1))(sqrt(3))/(2)] is

Write the value of sin(cot^(-1)x) .

Let g(x)= ax + b , where a lt 0 and g is defined from [1,3] onto [0,2] then the value of cot ( cos^(-1) (|sin x | + |cos x|) + sin^(-1)(-|cos x | - |sinx|)) is equal to :

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

If sin^(4)x + sin^(2) x =1 , then the value of cot^(4)x + cot^(2)x is: