Home
Class 12
MATHS
The value of tan^(-1)("tan"(5pi)/6)+cos^...

The value of `tan^(-1)("tan"(5pi)/6)+cos^(-1)("cos"(13pi)/6)` is:

A

0

B

`-1`

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) \), we will break it down step by step. ### Step 1: Simplify \( \tan(5\pi/6) \) The angle \( 5\pi/6 \) can be expressed as: \[ 5\pi/6 = \pi - \pi/6 \] Using the tangent subtraction identity: \[ \tan(\pi - \theta) = -\tan(\theta) \] Thus: \[ \tan(5\pi/6) = -\tan(\pi/6) \] We know that: \[ \tan(\pi/6) = \frac{1}{\sqrt{3}} \] So: \[ \tan(5\pi/6) = -\frac{1}{\sqrt{3}} \] ### Step 2: Find \( \tan^{-1}(\tan(5\pi/6)) \) Since \( 5\pi/6 \) is in the second quadrant, where tangent is negative, we have: \[ \tan^{-1}(\tan(5\pi/6)) = 5\pi/6 \] ### Step 3: Simplify \( \cos(13\pi/6) \) The angle \( 13\pi/6 \) can be expressed as: \[ 13\pi/6 = 2\pi + \pi/6 \] Using the cosine periodicity: \[ \cos(2\pi + \theta) = \cos(\theta) \] Thus: \[ \cos(13\pi/6) = \cos(\pi/6) \] We know that: \[ \cos(\pi/6) = \frac{\sqrt{3}}{2} \] ### Step 4: Find \( \cos^{-1}(\cos(13\pi/6)) \) Since \( \pi/6 \) is in the first quadrant, we have: \[ \cos^{-1}(\cos(13\pi/6)) = \pi/6 \] ### Step 5: Combine the results Now we can combine the results from Steps 2 and 4: \[ \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) = \frac{5\pi}{6} + \frac{\pi}{6} \] Adding these two fractions gives: \[ \frac{5\pi}{6} + \frac{\pi}{6} = \frac{6\pi}{6} = \pi \] ### Final Answer Thus, the value of \( \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) \) is: \[ \pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)("tan"(7pi)/(6))+ cos^(-1)("cos"(7pi)/(6))

The value of tan^(-1)(tan(8*pi/6)) is

tan^(-1)(tan^(5 pi/6))

tan^(-1)(tan((7pi)/6))

tan^(-1)(tan""(7pi)/(6))

2tan^(-1)(tan((7pi)/6))

The value of sin{tan^(-1) (tan 7pi/6) + cos^(-1)(cos 7pi/3)} is _____.

Evaluate: tan^(-1)((tan(5 pi))/(6))+cos^(-1){cos((13 pi)/(6))}

Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .