Home
Class 12
MATHS
If y=tan(x+y), then dy/dx is equal to:...

If y=tan(x+y), then dy/dx is equal to:

A

`-cot^2(x+y)`

B

`-"cosec"^2(x+y)`

C

`-cot(x+y)"cosec"(x+y)`

D

`-tan^2(x+y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y = \tan(x + y)\), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ y = \tan(x + y) \] Differentiating both sides with respect to \(x\): \[ \frac{dy}{dx} = \sec^2(x + y) \cdot \left(1 + \frac{dy}{dx}\right) \] This uses the chain rule, where the derivative of \(\tan(u)\) is \(\sec^2(u) \cdot \frac{du}{dx}\). ### Step 2: Expand the right-hand side Now, we expand the right-hand side: \[ \frac{dy}{dx} = \sec^2(x + y) + \sec^2(x + y) \cdot \frac{dy}{dx} \] ### Step 3: Collect all \(\frac{dy}{dx}\) terms Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} - \sec^2(x + y) \cdot \frac{dy}{dx} = \sec^2(x + y) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left(1 - \sec^2(x + y)\right) = \sec^2(x + y) \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\sec^2(x + y)}{1 - \sec^2(x + y)} \] ### Step 5: Simplify the expression Using the identity \(\sec^2(u) = 1 + \tan^2(u)\), we can rewrite the denominator: \[ 1 - \sec^2(x + y) = 1 - (1 + \tan^2(x + y)) = -\tan^2(x + y) \] Thus, we have: \[ \frac{dy}{dx} = \frac{\sec^2(x + y)}{-\tan^2(x + y)} = -\frac{\sec^2(x + y)}{\tan^2(x + y)} \] ### Final Answer The final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\cot^2(x + y) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x tan y , then (dy)/(dx) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If x^y=y^x , then (dy)/(dx) is equal to......

If y=tan^(-1)x ,then (dy)/(dx) is

y=x^(x) then dy/dx equals

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to