Home
Class 12
MATHS
If the points (a1,b1),(a2,b2) and (a1+a2...

If the points `(a_1,b_1),(a_2,b_2)` and `(a_1+a_2,b_1+b_2)` are collinear, then:

A

`a_1 b_2=a_2 b_1`

B

`a_1 + a_2 = b_1 + b_2`

C

`a_1 a_2= b_1 b_2`

D

`a_1 + b_1 = a_2 + b_2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition for the points \((a_1, b_1)\), \((a_2, b_2)\), and \((a_1 + a_2, b_1 + b_2)\) to be collinear, we can use the concept of the area of a triangle formed by these three points. If the area is zero, then the points are collinear. ### Step-by-Step Solution: 1. **Set Up the Area Formula**: The area \(A\) of the triangle formed by the points \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the determinant: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] For our points, we have: - \((x_1, y_1) = (a_1, b_1)\) - \((x_2, y_2) = (a_2, b_2)\) - \((x_3, y_3) = (a_1 + a_2, b_1 + b_2)\) 2. **Substituting the Points into the Area Formula**: We substitute the coordinates into the area formula: \[ A = \frac{1}{2} \left| a_1(b_2 - (b_1 + b_2)) + a_2((b_1 + b_2) - b_1) + (a_1 + a_2)(b_1 - b_2) \right| \] This simplifies to: \[ A = \frac{1}{2} \left| a_1(-b_1) + a_2(b_2) + (a_1 + a_2)(b_1 - b_2) \right| \] 3. **Simplifying the Expression**: Expanding the expression: \[ A = \frac{1}{2} \left| -a_1b_1 + a_2b_2 + a_1b_1 - a_1b_2 + a_2b_1 - a_2b_2 \right| \] This reduces to: \[ A = \frac{1}{2} \left| a_2b_1 - a_1b_2 \right| \] 4. **Setting the Area to Zero**: For the points to be collinear, the area must be zero: \[ \frac{1}{2} \left| a_2b_1 - a_1b_2 \right| = 0 \] This implies: \[ a_2b_1 - a_1b_2 = 0 \] 5. **Final Condition**: Rearranging gives us the condition: \[ a_2b_1 = a_1b_2 \] ### Conclusion: The points \((a_1, b_1)\), \((a_2, b_2)\), and \((a_1 + a_2, b_1 + b_2)\) are collinear if and only if: \[ a_2b_1 = a_1b_2 \]
Promotional Banner