Home
Class 12
MATHS
If e^x+e^y=e^(x+y), then dy/dx is:...

If `e^x+e^y=e^(x+y)`, then dy/dx is:

A

`e^(y-x)`

B

`e^(x+y)`

C

`-e^(y-x)`

D

`2e^(x-y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^x + e^y = e^{x+y} \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ e^x + e^y = e^{x+y} \] We can rewrite the right-hand side using the property of exponents: \[ e^{x+y} = e^x \cdot e^y \] Thus, we have: \[ e^x + e^y = e^x \cdot e^y \] ### Step 2: Rearrange the equation Rearranging gives us: \[ e^x + e^y - e^x \cdot e^y = 0 \] This can be factored as: \[ e^x(1 - e^y) + e^y = 0 \] ### Step 3: Divide by \( e^x e^y \) To simplify, we can divide the entire equation by \( e^x e^y \) (assuming \( e^x \) and \( e^y \) are not zero): \[ \frac{e^x}{e^x e^y} + \frac{e^y}{e^x e^y} = \frac{e^{x+y}}{e^x e^y} \] This simplifies to: \[ \frac{1}{e^y} + \frac{1}{e^x} = 1 \] or \[ e^{-y} + e^{-x} = 1 \] ### Step 4: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(e^{-y}) + \frac{d}{dx}(e^{-x}) = \frac{d}{dx}(1) \] Using the chain rule, we have: \[ -e^{-y} \frac{dy}{dx} - e^{-x} = 0 \] ### Step 5: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ -e^{-y} \frac{dy}{dx} = e^{-x} \] Now, isolating \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{e^{-x}}{e^{-y}} = -e^{y-x} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -e^{y-x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y); then (dy)/(dx) is

If x^y = e^(x-y) " then " dy/dx ?

If y=e^(x^(x)), then (dy)/(dx) is

If x=e^(x/y), then (dy)/(dx) is equal to

If e^x+e^y=e^(x+y) , show that (dy/dx)=e^(x-y)((e^y-1)/(1-e^x))

If e^(x)+e^(y)=x+y, then (dy)/(dx)=

If x+e^x = y+e^y then (dy)/(dx)=

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=