Home
Class 12
MATHS
The derivative of sin^(-1)(2xsqrt(1-x^2)...

The derivative of `sin^(-1)(2xsqrt(1-x^2))` w.r.t. `sin^(-1)x,(1)/(sqrt2) lt x lt 1 ` is :

A

2

B

`pi/2-2`

C

`pi/2`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of sin^(-1) (2x sqrt(1-x^(2)))" w.r.t. "sin^(-1)x, (1)/(sqrt(2)) lt x lt 1 , is:

Find the derivative of y=sin^(-1)(2xsqrt(1-x^2))

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Derivative of (sin^(-1))/(1+sin^(-1)x)w.r.t.sin^(-1)x is

Find the derivative of tan^(-1)(2x)/(1-x^(2))quad w.r.t sin^(-1)(2x)/(1+x^(2))

Derivative of sec^(-1)((1)/(1-2x^(2))) w.r.t. sin^(-1)(3x-4x^(3)) is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is