Home
Class 12
MATHS
If tan^(-1)x=y, then:...

If `tan^(-1)x=y`, then:

A

`-1 lt y lt 1`

B

`(-pi)/2leylepi/2`

C

`(-pi)/2ltyltpi/2`

D

`yin[(-pi)/2,pi/2]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If y=x tan^(-1)(x/y) then prove that (dy/dx)=(y/x)

If y=x tan^(-1)(x/y) then prove that dy/dx=y/x

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=