Home
Class 12
MATHS
Given that A=[(alpha, beta),(gamma, alph...

Given that `A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I`, then :

A

`1+alpha^2+beta y=0`

B

`1-alpha^2-beta y=0`

C

`3-alpha^2-beta y=0`

D

`3+alpha^2+beta y=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

If A=[(alpha,beta),(gamma,-alpha)] is such that A^(2)=I , then :

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |

If alpha,beta;beta,gamma;gamma,alpha are the roots of a_(i)x^(2)+b_(i)x+c_(i)=0, for i=1,2,3, (given that alpha,beta,gamma>0 if sum alpha+sum alpha beta+alpha beta gamma=(Pi_(i=1)^(3)((a_(i)-b_(i)+c_(i))/(a_(i)))^((1)/(2))+k, then k is equal to

Prove that: | alpha beta gamma alpha^(2)beta^(2)gamma^(2)beta+gamma gamma+alpha alpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Q.show that det [[- alpha (2), alpha beta, gamma alphaalpha beta, -beta ^ (2), beta gammagamma alpha, beta gamma, -gamma ^ (2)]] = 4 alpha ^ (2) beta ^ (2) gamma ^ (2)

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .