Home
Class 11
MATHS
Find the value of p so that the straight...

Find the value of p so that the straight line ` x cos alpha + y sin alpha - p = 0 ` may touch the circle
` x^(2) + y^(2) - 2a x cos alpha - 2by sin alpha - a^(2) sin ^(2) alpha = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( p \) such that the line \( x \cos \alpha + y \sin \alpha - p = 0 \) touches the circle given by \[ x^2 + y^2 - 2ax \cos \alpha - 2by \sin \alpha - a^2 \sin^2 \alpha = 0, \] we can follow these steps: ### Step 1: Identify the center and radius of the circle The general form of the circle is: \[ x^2 + y^2 - 2hx - 2ky + c = 0, \] where \( (h, k) \) is the center and \( r \) is the radius. From the given circle equation, we can rewrite it as: \[ x^2 + y^2 - 2a \cos \alpha \cdot x - 2b \sin \alpha \cdot y - a^2 \sin^2 \alpha = 0. \] Thus, the center \( (h, k) \) is: \[ h = a \cos \alpha, \quad k = b \sin \alpha. \] ### Step 2: Calculate the radius of the circle The radius \( r \) can be found using the formula: \[ r = \sqrt{h^2 + k^2 - c}. \] Here, \( c = -a^2 \sin^2 \alpha \), so: \[ r = \sqrt{(a \cos \alpha)^2 + (b \sin \alpha)^2 + a^2 \sin^2 \alpha}. \] This simplifies to: \[ r = \sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha + a^2 \sin^2 \alpha} = \sqrt{a^2 (\cos^2 \alpha + \sin^2 \alpha) + b^2 \sin^2 \alpha} = \sqrt{a^2 + b^2 \sin^2 \alpha}. \] ### Step 3: Find the distance from the center to the line The distance \( d \) from the center \( (h, k) \) to the line \( Ax + By + C = 0 \) is given by: \[ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}, \] where \( (x_0, y_0) \) is the center of the circle. For our line \( x \cos \alpha + y \sin \alpha - p = 0 \), we have: - \( A = \cos \alpha \) - \( B = \sin \alpha \) - \( C = -p \) Thus, the distance \( d \) becomes: \[ d = \frac{|a \cos^2 \alpha + b \sin^2 \alpha - p|}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}} = |a \cos^2 \alpha + b \sin^2 \alpha - p|. \] ### Step 4: Set the distance equal to the radius Since the line touches the circle, the distance \( d \) must equal the radius \( r \): \[ |a \cos^2 \alpha + b \sin^2 \alpha - p| = \sqrt{a^2 + b^2 \sin^2 \alpha}. \] ### Step 5: Solve for \( p \) This gives us two cases to consider: 1. \( a \cos^2 \alpha + b \sin^2 \alpha - p = \sqrt{a^2 + b^2 \sin^2 \alpha} \) 2. \( a \cos^2 \alpha + b \sin^2 \alpha - p = -\sqrt{a^2 + b^2 \sin^2 \alpha} \) From the first case: \[ p = a \cos^2 \alpha + b \sin^2 \alpha - \sqrt{a^2 + b^2 \sin^2 \alpha}. \] From the second case: \[ p = a \cos^2 \alpha + b \sin^2 \alpha + \sqrt{a^2 + b^2 \sin^2 \alpha}. \] Thus, the values of \( p \) that allow the line to touch the circle are: \[ p = a \cos^2 \alpha + b \sin^2 \alpha \pm \sqrt{a^2 + b^2 \sin^2 \alpha}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line x cos alpha+y sin alpha=p will be a tangent to the circle x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0.1fp=

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

The general value of a such that the line x cos alpha+y sin alpha=P is a normal to the curve (x+a)y=c^(2) is

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the line x cos alpha+y sin alpha=P touches the curve 4x^(3)=27ay^(2), then (P)/(a)=

Find the condition that the line x cos alpha+y sin alpha=p touches the parabola y^(2)=4ax