Home
Class 11
MATHS
Find the condition that the straight lin...

Find the condition that the straight line `A x + By + C = 0` may touch the circle
`( x - a) ^(2) + ( y - b) ^(2) = c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
` A a + B b = C = pm c sqrt(A ^(2) + B^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the condition that the straight line cx-by+b^(2)=0 may touch the circle x^(2)+y^(2)=ax+by

Find the condition that the straight line y = mx + c touches the hyperbola x^(2) - y^(2) = a^(2) .

If line 3x - y + c = 0 touches circle x^(2) + y^(2) - 2x + 8y - 23 =0 , then c =

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2=0 if

A straight line x=y+2 touches the circle 4(x^(2)+y^(2))=r^(2), The value of r is:

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0, if

Find the value of lambda so that the line 3x-4y= lambda may touch the circle x^2+y^2-4x-8y-5=0